Accepted Manuscript

Full Length Article

Synthesis and Capacitance Properties of N-doped Porous Carbon/NiO Nanosheet Composites Using Coal-based Polyaniline as Carbon and Nitrogen Source

Xiaoqin Wang, Qiaoqin Li, Yong Zhang, Yufei Yang, Zhi Cao, Shanxin Xiong

PII: S0169-4332(18)30528-2

DOI: https://doi.org/10.1016/j.apsusc.2018.02.173

Reference: APSUSC 38631

To appear in: Applied Surface Science

Received Date: 20 July 2017
Revised Date: 9 January 2018
Accepted Date: 17 February 2018

Please cite this article as: X. Wang, Q. Li, Y. Zhang, Y. Yang, Z. Cao, S. Xiong, Synthesis and Capacitance Properties of N-doped Porous Carbon/NiO Nanosheet Composites Using Coal-based Polyaniline as Carbon and Nitrogen Source, *Applied Surface Science* (2018), doi: https://doi.org/10.1016/j.apsusc.2018.02.173

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Synthesis and Capacitance Properties of N-doped Porous Carbon/NiO Nanosheet Composites Using Coal-based Polyaniline as Carbon and Nitrogen Source

Xiaoqin Wang*, Qiaoqin Li, Yong Zhang, Yufei Yang, Zhi Cao, Shanxin Xiong*

(College of Chemistry & Chemical Engineering, Xi'an University of Science & Technology, Xi'an 710054, PR China)

Abstract: A novel synthesis approach of N-doped porous carbon (NPC)/NiO composites possessing some honeycomb-shaped nanoporous carbon and plentiful NiO nanosheets is exploited. First NPC/Ni composites are achieved with NPC yield of 52.9 % through a catalytic pyrolysis method, using coal-based polyaniline particles prepared by an in-situ polymerization method as a carbon and nitrogen source, and nickel particles as a catalyst, respectively. Next NPC/NiO composites are achieved unexpectedly with plentiful NiO nanosheets and N content of 1.00 wt% after a liquid oxidation process. In NPC/NiO composites, porous carbon mainly presents in the amorphous state, while the incorporated nitrogen mainly presents in the form of pyrrolic N (92.9 at%) and oxidized N (7.1 at%). Plentiful NiO nanosheets are embedded in the pores or on the NPC surface. 33.3 at% Ni₂O₃ components exist in the surface of NiO nanosheets. NPC/NiO composites possess not only rich micropores, but also significant mesopores and nanoscale macropores. The BET specific surface area, BET average pore width and BJH adsorption average pore diameter are 627.5 m²/g, 2.0 nm and 5.1 nm, respectively. NPC/NiO composites demonstrate a high specific capacitance of 404.1 F/g at 1 A/g, and a good cycling stability maintaining

Download English Version:

https://daneshyari.com/en/article/7834957

Download Persian Version:

https://daneshyari.com/article/7834957

<u>Daneshyari.com</u>