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a b s t r a c t

Motivated by recent experimental observations of capillary-induced spooling of fibers inside droplets both in
spider capture silk and in synthetic systems, we investigate the behavior of a fiber packed in a drop. Using a
simplified 2D model, we provide analytical predictions for the buckling threshold and the deep post-
buckling asymptotic behavior. The threshold for spooling is found to be in particularly good agreement with
experimental results. We further solve the Elastica equations for a fiber confined in a soft potential, and track
the equilibrium paths using numerical continuation techniques. A wealth of different paths corresponding to
different symmetries is uncovered, and their stability is finally discussed.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The mechanical properties of spider silk are often presented as
outstanding [1,2]. An indeed, most silk threads outperform the best
man-made fibers, such a Kevlar, at least in terms of toughness [3]. To
a large extent, these properties rely on the molecular architecture of
the silk. For example, it has been shown that the building blocks of
flagelliform silk involve molecular nanosprings [4]. In 1989 however,
a team comprising a zoologist and a physicist reported on coiling and
packing of the core filament inside a glue droplet [5]. This windlass
mechanism, as it was called, provided indirect evidence that the glue
droplets may as well play a role in the mechanical response of the
silk thread. These results have been a subject of debate in the
community, and it is only very recently that the mechanism has
been observed to be active in a real spider web, see Fig. 1 (left) [6]. A
natural question that arises in this context is the role played by the
molecular structure of the silk and the glue in the observed coiling.
An experimental answer to this question is provided in Fig. 1 (right),
where a micron-sized artificial thread bearing a silicon oil droplet
also exhibits the coiling mechanism and packing behavior, therefore
demonstrating that capillarity and elasticity are sufficient ingredients
to explain the mechanism.

Interestingly, the shape adopted by the filament inside the drop
can be as different as a perfectly ordered closely packed annular
bundle or a completely disordered tangle. This behavior is

reminiscent of the organization of packed wires in rigid [7] and
elastic [8] spherical shells, patterns of folded structures such as plant
leaves or crumpled paper [9,10], and DNA packing inside capsids [11–
13]. The purpose of the present paper is to explore theoretically in a
simplified setting the shape and stability of strongly post-buckled
states in order to lay down the basis for a deeper understanding of
the windlass mechanism.

The paper is organized as follows. In Section 2 we present the
problem and the equilibrium equations. In Section 3 we perform a
linear stability analysis of the straight beam and predict the buckling
threshold. Experimental results are confronted to theoretical in
Section 4. Finally, we describe the non-linear response of the system
in terms of equilibrium solutions and their stability in Section 5.

2. Model

We consider an elastic beam in interaction with a liquid disk and
under the action of a tensile end-load. As indicated in Fig. 2, we
restrict to planar deformations of the beam, X and Y denoting the
horizontal and vertical directions respectively. The beam has length L
and a circular cross-section of radius h. We work under the slender
(Lch) Euler–Bernoulli hypotheses where the beam is considered
inextensible and unshearable. Configurations are thus fully described
by the position and orientation of the centerline. We use the arc-
length SA ½0; L� and note θðSÞ the angle between the tangent of the
beam and the horizontal. The presence of the liquid disk generates
capillary forces due to the contrast of surface energy, the interaction
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energy of the beamwith the liquid being smaller than the interaction
energy of the beam with the air. Capillary forces are two-fold:
(i) meniscus forces applied on the beam at the entrance and exit of
the disk, and (ii) barrier forces that prevent the beam from exiting
the disk elsewhere than at the meniscus points. We consider that the
drop is undeformable and thus remains a disk throughout the
experiments. As shown in Appendix A, meniscus forces are pointing
toward the center of the disk (see Eqs. (A.15) and (A.18)) and their
intensity is related to the angle between their direction and the
tangent to the beam at the meniscus points (see Eq. (A.25)). A soft-
wall barrier potential [14]

VðX;YÞ ¼ V0

1þρ�ð1=RÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX�XCÞ2þðY�YCÞ2

q ð1Þ

is used to retain the beam inside the disk, centered on ðXC ;YCÞ and of
radius R. The small dimensionless parameter ρ is introduced to avoid
the potential to diverge at the meniscus points A and B, where the
rod enters and exits the disk. The intensity V0 of the potential is
chosen to be small, the hard-wall limit being V0-0. Kinematics,
relating the position (X,Y) of the rod and the inclination θof its
tangent ð cosθ; sinθÞ with the horizontal, the bending constitutive
relation, relating the curvature θ0ðSÞ to the moment M(S), and finally
force ðNx;NyÞ and moment balance are detailed in Appendix A and
read

X0ðSÞ ¼ cosθ; Y 0ðSÞ ¼ sinθ ð2aÞ

EIθ0ðSÞ ¼M; M0ðSÞ ¼Nx sinθ�Ny cosθ ð2bÞ

N0
xðSÞ ¼ χ

∂V
∂X

þδðS�SAÞΛA
XA�XC

R
þδðS�SBÞΛB

XB�XC

R
ð2cÞ

N0
yðSÞ ¼ χ

∂V
∂Y

þδðS�SAÞΛA
YA�YC

R
þδðS�SBÞΛB

YB�YC

R
ð2dÞ

where S is the arc-length along the rod, and ð Þ0 ¼ dðÞ=dS. We define
the coordinates of point A as ðXA;YAÞ ¼ ðXðSAÞ;YðSAÞÞ, same for point
B. Note that the potential V has the dimension of an energy per unit of
arc-length of the beam. For SA ½SA; SB� the rod lies inside the disk and
we have χ¼1, otherwise χ¼0. The Dirac distribution δðSÞ localizes
meniscus forces at points A and B. The rod material has Young's
modulus E and the second moment of area I¼ πh4=4. The intensities
ΛA and ΛB of the meniscus forces are unknown but related to surface
tension γLV through Eq. (A.25), where Fγ ¼ 2πhγLV cosαY with αY

being the Young–Dupré wetting angle (γSV�γSL ¼ γLV cosαY ), and
where VA ¼ VB ¼ V0=ρ are small compared to Fγ . We restrict ourself
to cases where the disk is centered on the mid-point of the rod, that is
we introduce Σ such that SA ¼ L=2� Σ and SB ¼ L=2þΣ. The rod has
then 2Σ of its arc-length spent inside the disk. Finally the external
applied tension is noted T ¼NxðLÞ.

2.1. Non-dimensionalization

We use the diameter D¼ 2R of the disk as unit length, and the
buckling load EI=D2 as unit force. We thus introduce the following
dimensionless quantities:

s¼ S
D
; σ ¼Σ

D
; ℓ¼ L

D
; ðx; yÞ ¼ ðX;YÞ

D
; n¼ND2

EI
; t ¼ TD2

EI
ð3aÞ

f γ ¼
FγD

2

EI
; m¼MD

EI
; λA;B ¼

ΛA;BD
2

EI
; ðv; v0Þ ¼

ðV ;V0ÞD2

EI
ð3bÞ

and δðsÞ ¼DδðSÞ. We then have

vðx; yÞ ¼ v0 1þρ�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
x�xC

�2þ y�yC
� �2q� ��1

and

x0ðsÞ ¼ cosθ; y0ðsÞ ¼ sin θ ð4aÞ

θ0ðsÞ ¼m; m0ðsÞ ¼ nx sinθ�ny cos θ ð4bÞ

n0
xðsÞ ¼ χ

∂v
∂x

þ2δðs�sAÞλAðxA�xCÞþ2δðs�sBÞλBðxB�xCÞ ð4cÞ

n0
yðsÞ ¼ χ

∂v
∂y

þ2δðs�sAÞλAðyA�yCÞþ2δðs�sBÞλBðyB�yCÞ ð4dÞ

where ð Þ0 ¼ dðÞ=ds, and sA ¼ ℓ=2�σ, sB ¼ ℓ=2þσ.

2.2. Boundary-value problem

We consider v0, ρ, f γ , and ℓ as fixed parameters and we look for
equilibrium solutions by integrating (4) with the initial conditions

xð0Þ ¼ 0; yð0Þ ¼ 0; θð0Þ ¼ 0; mð0Þ ¼m0; nxð0Þ ¼ nx0;

nyð0Þ ¼ ny0 ð5Þ

where m0, nx0, and ny0 are unknowns to be accompanied with σ,
xC, yC, λA, and λB. We therefore have eight unknowns which are
balanced by the following seven conditions. At the s¼ ℓ end of the
rod, clamped boundary conditions read

yðℓÞ ¼ 0; θðℓÞ ¼ 0 ð6Þ

The requirement that points A and B lie on the circle yields the
conditions

½xA�xC �2þ½yA�yC �2 ¼ 1=4; ½xB�xC �2þ½yB�yC �2 ¼ 1=4 ð7Þ

Fig. 1. Experiments on fibers bent inside liquid drops. Left: microscopic photograph of spider capture silk. Flagelliform core filaments are seen to be coiled and packed inside
a (typically 300μ wide) glue droplet. Right: same mechanism reproduced artificially with a 200 μm synthetic droplet and fiber (see experimental verification section in
Section 4). Reproduced from [6].

Fig. 2. An elastic beam held in tension at its extremities, and buckling under the
action of compressive forces at a disk. The beam is clamped at both ends. The
deformation of the beam is described by the angle θðSÞ between the tangent to the
beam and the x-axis, where SA ½0; L� is the arc-length along the beam.
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