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The CuO-Ce0,@SiO,, catalyst with flower-sphere morphology was prepared by the impregnation method
and then experienced the reduction-oxidation treatment at different temperatures. The multi-technique
characterization shows that the reduction-oxidation treatment can remodel CuO, improve textural and
surface properties and change Cu* content and synergistic effect of copper and cerium. The importance
of this work lies in the fact that the decrease of Cu* content and synergistic effect of copper and cerium
that occurs in the reduction-oxidation process results in the decrease of catalytic activity over the CuO-
Ce0,@Si0, catalyst for preferential CO oxidation. The process of reaction in rich-hydrogen streams is
equivalent to a reduction procedure which decreases Cu* content and synergistic effect of copper and

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Many researches have focused on producing and delivering of
clean hydrogen as the interest in proton-exchange membrane fuel
cells (PEMFCs) increases [1-3]. Hydrogen for PEMFCs is usually
generated by a multistage process including catalytic reforming
of hydrocarbons and water-gas shift reaction. The resulting rich-
hydrogen streams contain 0.5-2.0 vol% CO, which poisons Pt anode
and must be removed to a trace level below 100 ppm [4-6]. Prefer-
ential oxidation of CO (CO-PROX) has been recognized as the most
simple and cost-effective method to reduce CO from rich-hydrogen
streams [4,7,8].

CuO-Ce0, bimetal oxides are alternative catalysts to noble met-
als due to low cost and high catalytic performance in PROX reac-
tion [9-16]. Catalytic performance is related to synergistic
interaction of CuO-CeO, interfacial sites since activity of CO oxida-
tion has been attributed to redox cycles of Ce**/Ce3* and Cu?*/Cu*,
which are abundant in contact interface of copper and cerium
[8,9,17-20]. The interfacial CuO is easily reduced to form Cu"* spe-
cies that is generally considered as CO adsorption sites. Meanwhile,
oxygen vacancies at contact interface can capture gas-phase oxy-
gen molecules which are driven into active oxygen species. CO
molecules adsorbed onto Cu® would be quickly oxidized by
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adjacent active oxygen species [12,20]. Oxygen vacancies are reac-
tivated and continuously capture gas-phase oxygen molecules to
produce new active species around interface after desorbing
oxygen [21,22]. However, CuO/CeO, catalyst usually decreases cat-
alytic activity above 150 °C, which restricts the application of CuO/
CeO, catalyst [23]. To solve this problem, the inverse CeO,/CuO
catalyst is developed since 2010 [12,14,23]. The inverse CeO,/CuO
catalyst will experience the decrease of catalytic activity above
180 °C although it has better high-temperature activity than the
Cu0/CeO, catalyst. Therefore, it is essential to explore the cause
of the decrease of catalytic activity in hydrogen-rich streams.

The process of reaction in rich-hydrogen streams for CO-PROX
is equivalent to a reduction procedure. It is reported that reshaping
CuO on silica generates highly active Cu/SiO, catalyst via a
reduction-oxidation treatment [24]. There is a memory effect of
the shape of CuO to metal copper on silica during the reduction
process [24]. Therefore, we hope to acquire the information about
the change of copper species or synergistic interaction of copper
and cerium by the reduction-oxidation treatment.

In this work, the Ce0,@SiO, support with flower-sphere mor-
phology was prepared by the hydrothermal method, and the thin
Si0, layer was incompletely coated on the surface in order to
ensure contact between CuO and CeO,. The CuO-Ce0O,@SiO, cata-
lyst was prepared by the impregnation method and then experi-
enced reduction-oxidation treatment at different temperatures
aiming to remodel CuO on silica. The multi-technique characteriza-
tion was employed to correlate change of properties with catalytic
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performance. The goal is to gain a further insight into the essential
of the decrease of catalytic activity during CO-PROX reaction.

2. Experimental
2.1. Catalyst preparation

The Ce0,@SiO, support with flower-sphere morphology was
prepared by the two-step hydrothermal method [25]. The
CsH1206-H,0 was dissolved in 60 mL distilled water. The solution
was stirred vigorously and sealed into the Teflon-lined autoclave,
and then the solution was heated at 180 °C for 4 h. After cooling
to room temperature, the Ce(C;H30,);-1.5H,0 were added in the
above solution and kept at 180 °C for 12 h. The obtained solid
was washed and dried overnight at 80°C. It was denoted as
Ce0,@C.

The absolute ethyl alcohol, NH3-H,0 and CTAB were added into
a three-necked flask containing the CeO,@C aqueous solution,
respectively. The mixture was stirred and treated by ultrasonic
wave for 30 min. Then, the TEOS was added dropwise into the mix-
ture and stirred for 8 h. The mixture was washed by distilled water
and absolute ethanol and dried overnight at 80 °C. Further, the
solid was heated with a heating rate of 2 °C min~! and calcined
at 600 °C for 6 h. The sample was named as Ce0,@SiO,.

The CuO-CeO,@SiO, catalysts were prepared by incipient
wetness impregnation method. The as-prepared support was
impregnated in the Cu(COOH),-3H,0 aqueous solution. Then, it
was aged for 24 h and dried at 80 °C for 12 h. Finally, the solid
was calcined at 600 °C for 6 h. The products were denoted as
XCuO-Ce0,@Si0, catalysts. X before the symbol of CuO indicated
quantity of CuO in the catalysts.

The 30Cu0-Ce0,@SiO, catalyst was chosen as experimental
sample and experienced the reduction-oxidation treatment in a
tubular furnace as the following steps: (i) The sample was heated
from room temperature to 200 °C, 250 °C or 300 °C with a ramp
rate of 3°Cmin~! and kept for 6 h in 10% H,/Ar. (ii) The sample
after reduction treatment was divided into two parts. One part
was re-oxidized at 300°C and another part was oxidized at
600 °C for 6h in air. The obtained catalysts were marked as
Cu0-Ce0,@Si0,-Ry0z. Y indicated the temperature of reduction
(200, 250 or 300°C). Z represented the temperature of
re-oxidation (300 or 600 °C) after reduction treatment.

2.2. Catalyst characterization

X-ray powder diffraction was carried on a PANalytical Empyr-
eam X'pert PRO diffractometer by using Cu Ko source
(A=0.15406 nm). The range of scan was between 10°C and
80 °C. The average crystallite size was estimated according to
Scherrer’s equation.

Scanning electron microscopy images of the samples were
obtained by a Hitachi S-4800 scanning electron microscope with
an accelerating voltage of 15 kV. The samples were coated with a
thin layer of gold and platinum before scanning.

Transmission electron microscopy images of the samples were
taken on a FEI Tecnai G? F20 transmission electron microscope.
The samples were dispersed into ethanol with ultrasonic treatment
for 10 min, and a drop of the suspension was placed on a copper
grid for TEM observation.

N, adsorption-desorption isotherms were achieved via a Quan-
tachrome Autosorb-IQ adsorption analyzer at 77 K. Before each
measurement, the sample was outgassed in vacuum at 200 °C for
12 h. The surface area was estimated by the Brunauer-Emmett-T
eller method and the pore size distribution was calculated from
the desorption branch using the Barrett-Joyner-Halenda method.

H, temperature-programmed reduction was conducted on a
Micromeritics AutoChemII2920 equipped with a thermal conduc-
tivity detector. The samples were pretreated in a helium flow at
200°C for 1h and cooled to room temperature. The reduction
profiles were collected in the 5% H,/Ar mixture with a flow rate
of 35 mL/min from room temperature to 800 °C.

X-ray photoelectron spectra were collected on a Perkin Elmer
PHI 5000 ESCT System spectrometer with monochromatic Al Ka
radiation source (1486.6 eV) for the analyses of the core level sig-
nals of Cu 2p and Ce 3d. During data processing of XPS spectra,
binding energy values were referenced to C 1s peak (284.8 eV)
from adventitious contamination layer.

2.3. Catalytic performance test

Catalytic performance tests were carried on a fixed-bed reactor
at atmospheric pressure. A mixture gas containing 1.0 vol% CO,
1.0 vol% 0,, 50.0 vol% H, and N, balance was passed through the
reactor filled with 100 mg catalyst. The space velocity was
40,000mLh 'g™! and the reaction was operated from 35 to
235°C. The inlet and outlet streams were measured using an
online GC-2014C gas chromatograph equipped with a thermal con-
ductivity detector. CO, O, and N, were separated by a 5A molecular
sieve column, and CO, and CH,4 were separated by a TDX column.
The conversion of CO (Cco) and O, (Coy) as well as selectivity of
CO; (Scoz) were calculated according to the following Egs. (1), (2)
and (3), respectively.

Ceo (%) = (ICOJ;, — [COJoy)/[COJ;, x 100 (1)
Coz (%) = ([O2liy — [O2]gu)/[Oa];, > 100 )
Scoz (%) = Cco/?xoz x 100 (3)

In all the catalytic tests, A = 2 was used, because this value was
optimal for preferential oxidation of CO [26].

3. Results
3.1. Catalyst selection

3.1.1. X-ray power diffraction

Fig. 1 shows XRD patterns of the CuO-CeO,@SiO, catalysts with
different CuO content. The diffraction peaks at 28.55°, 33.08°,
47.49° and 56.53° were indexed to cubic fluorite CeO, [27,28].
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Fig. 1. XRD patterns of the CuO-Ce0,@SiO, catalysts.
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