## Accepted Manuscript

Full Length Article

Microstructure, mechanical and tribological characterization of CrN/DLC/Cr-DLC multilayer coating with improved adhesive wear resistance

Xudong Sui, Jinyu Liu, Shuaituo Zhang, Jun Yang, Junying Hao

PII: S0169-4332(17)33926-0

DOI: https://doi.org/10.1016/j.apsusc.2017.12.266

Reference: APSUSC 38136

To appear in: Applied Surface Science

Received Date: 15 September 2017 Revised Date: 27 November 2017 Accepted Date: 30 December 2017



Please cite this article as: X. Sui, J. Liu, S. Zhang, J. Yang, J. Hao, Microstructure, mechanical and tribological characterization of CrN/DLC/Cr-DLC multilayer coating with improved adhesive wear resistance, *Applied Surface Science* (2018), doi: https://doi.org/10.1016/j.apsusc.2017.12.266

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

## **ACCEPTED MANUSCRIPT**

Microstructure, mechanical and tribological characterization of CrN/DLC/Cr-DLC multilayer coating with improved adhesive wear resistance

Xudong Sui\*1,2, Jinyu Liu<sup>1,3</sup>, Shuaituo Zhang<sup>1,2</sup>, Jun Yang<sup>1</sup>, Junying Hao\*1

1: State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Science, Lanzhou 730000, China

2: Qingdao Center of Resource Chemistry and New Materials, Qingdao 266000, China

3: University of Chinese Academy of Sciences, Beijing 100049, China

\* suixudong@licp.cas.cn; \*\* jyhao@licp.cas.cn

#### **Abstract**

Adhesive wear is one of the major reasons for the failure of components during various tribological application, especially for rubbing with viscous materials. This study presents CrN/DLC/Cr-DLC multilayer composite coatings prepared on a plasma enhanced chemical vapor deposition (PECVD) device with the close field unbalanced magnetron sputtering ion plating (CFUBMSIP) technique. SEM, XRD and Raman spectroscopy were used to determine the structure of multilayer coatings. It was found that the multilayer coatings are composed by the alternating CrN and DLC layers. Compared with the single CrN coatings, the friction coefficient of the CrN/DLC/Cr-DLC multilayer coating decreases about more than seven times after sliding a distance of 500 m. This helps to reduce the adhesive wear of multilayer coatings. Compared with the single CrN and DLC coating, the wear rate of the CrN/DLC/Cr-DLC multilayer coating is reduced by an order of magnitude to  $7.10 \times 10^{-17}$  (sliding with AISI 440C) and  $2.64 \times 10^{-17}$  (sliding with TC4) m<sup>3</sup>/ (Nm). The improved tribological performance of multilayer coatings mainly attributes to the introduction of lubricant DLC and hard support CrN layers, the enhancement of crack propagation inhibition, and the increment of elastic recovery value  $W_e$  (71.49%) by multilayer design method.

**Key words:** Multilayer coatings; CrN; DLC; Friction and wear; Adhesive wear.

### Download English Version:

# https://daneshyari.com/en/article/7835157

Download Persian Version:

https://daneshyari.com/article/7835157

<u>Daneshyari.com</u>