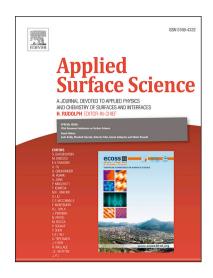
Accepted Manuscript

Full Length Article

Interface engineered construction of porous g-C₃N₄/TiO₂ heterostructure for enhanced photocatalysis of organic pollutants

Ya-Nan Li, Zhao-Yang Chen, Min-Qiang Wang, Long-zhen Zhang, Shu-Juan Bao


PII: S0169-4332(18)30115-6

DOI: https://doi.org/10.1016/j.apsusc.2018.01.106

Reference: APSUSC 38245

To appear in: Applied Surface Science

Received Date: 21 October 2017 Revised Date: 5 January 2018 Accepted Date: 10 January 2018

Please cite this article as: Y-N. Li, Z-Y. Chen, M-Q. Wang, L-z. Zhang, S-J. Bao, Interface engineered construction of porous g-C₃N₄/TiO₂ heterostructure for enhanced photocatalysis of organic pollutants, *Applied Surface Science* (2018), doi: https://doi.org/10.1016/j.apsusc.2018.01.106

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

CCEPTED MANUSCRIPT

Interface engineered construction of porous g-C₃N₄/TiO₂ heterostructure for

enhanced photocatalysis of organic pollutants

Ya-Nan Li^{a,b}, Zhao-Yang Chen^b, Min-Qiang Wang^b, Long-zhen Zhang^b, Shu-Juan Bao ^b*

a, Chongqing Key Laboratory of Environmental Materials & Remediation Technologies,

Chongqing University of Arts and Science, Chongqing, 402160, P. R. China.

b, Institute for Clean Energy & Advanced Materials, Faculty of Materials and Energy, Southwest

University, Chongqing, 400715, P. R. China.

*Corresponding author E-mail: baoshj@swu.edu.cn

Abstract:

A porous g-C₃N₄/TiO₂ with hierarchical heterostructure has been successfully fabricated

through the in situ assembling of small needle-like TiO₂ on the surface of ultrathin g-C₃N₄ sheets.

The ultrathin g-C₃N₄ sheets with carbon vacancies and rich hydroxyl groups were found to

facilitate the nucleation and in situ growth of TiO2 and also to modulate the surface chemical

activity of the g-C₃N₄/TiO₂ hierarchical heterostructure. The as-designed photocatalytic

heterojunction degraded Acid Orange with 82% efficiency after 10 min under simulated solar light,

and possessed excellent cycle stability. Relative physical characterizations and photochemical

experiments reveal that engineering the interface/surface of g-C₃N₄ plays a vital role in effectively

constructing heterostructures of g-C₃N₄/TiO₂, thus realizing efficient photoinduced electron—hole

separation during photocatalytic process.

Keywords: hierarchical heterostructure, interface engineering, M-g-C₃N₄/TiO₂, photocatalyst,

1. Introduction

Azo dyes are the most infamous and widespread environmental pollutants, producing waste

1

Download English Version:

https://daneshyari.com/en/article/7835199

Download Persian Version:

https://daneshyari.com/article/7835199

<u>Daneshyari.com</u>