Accepted Manuscript

Full Length Article

High density gold nanoparticles immobilized on surface via plasma deposited APTES film for decomposing organic compounds in microchannels

Xi Rao, Cédric Guyon, Stephanie Ognier, Bradley Da Silva, Chenglin Chu, Michaël Tatoulian, Ali Abou Hassan

PII: S0169-4332(18)30013-8

DOI: https://doi.org/10.1016/j.apsusc.2018.01.009

Reference: APSUSC 38148

To appear in: Applied Surface Science

Received Date: 6 August 2017 Revised Date: 29 December 2017 Accepted Date: 2 January 2018

Please cite this article as: X. Rao, C. Guyon, S. Ognier, B. Da Silva, C. Chu, M. Tatoulian, A.A. Hassan, High density gold nanoparticles immobilized on surface via plasma deposited APTES film for decomposing organic compounds in microchannels, *Applied Surface Science* (2018), doi: https://doi.org/10.1016/j.apsusc.2018.01.009

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

High density gold nanoparticles immobilized on surface via plasma deposited APTES film for decomposing organic compounds in microchannels

Xi Rao ^{a, b, *}, Cédric Guyon ^b, Stephanie Ognier ^b, Bradley Da Silva ^b, Chenglin Chu ^c, Michaël Tatoulian ^b, Ali Abou Hassan ^{d,*}

^a Faculty of Materials and Energy, Southwest University, Chongqing 400715, China

^b PSL Research University, Institut de Recherche de Chimie Paris, CNRS – Chimie ParisTech, 11 rue Pierre et Marie Curie, 75005 Paris, France

^c School of Materials Science and Engineering and Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China

^d Laboratoire Physico-chimie des Electrolytes, Nanosystèmes InterfaciauX (PHENIX), UPMC, UMR 8234, 4 place Jussieu-case 51, 75252 Paris Cedex 05, France

Abstract

Immobilization of colloidal particles (e.g. gold nanoparticles (AuNps)) on the inner surface of micro-/nano- channels has received a great interest for catalysis. A novel catalytic ozonation setup using a gold-immobilized microchannel reactor was

Download English Version:

https://daneshyari.com/en/article/7835268

Download Persian Version:

https://daneshyari.com/article/7835268

Daneshyari.com