Accepted Manuscript

Full Length Article

Adsorption of phenol and hydrazine upon pristine and X-decorated (X=Sc, Ti, Cr and Mn) MoS_2 Monolayer

Meiyan Wang, Wei Wang, Min Ji, Xinlu Cheng

PII:	S0169-4332(18)30040-0
DOI:	https://doi.org/10.1016/j.apsusc.2018.01.036
Reference:	APSUSC 38175
To appear in:	Applied Surface Science
Received Date:	5 November 2017
Revised Date:	27 December 2017
Accepted Date:	4 January 2018

Please cite this article as: M. Wang, W. Wang, M. Ji, X. Cheng, Adsorption of phenol and hydrazine upon pristine and X-decorated (X=Sc, Ti, Cr and Mn) MoS₂ Monolayer, *Applied Surface Science* (2018), doi: https://doi.org/10.1016/j.apsusc.2018.01.036

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Adsorption of phenol and hydrazine upon pristine and

X-decorated (X=Sc, Ti, Cr and Mn) MoS₂ Monolayer

Meiyan Wang¹, Wei Wang², Min Ji¹, Xinlu Cheng^{1,†}

¹Institute of Atomic and Molecular Physics, Sichuan University, Chengdu, 610065,

China

²College of Physical Science and Technology, Sichuan University, Chengdu, 610064, China

Abstract

Using density functional theory (DFT), we present a theoretical investigation of phenol (C_6H_5OH) and hydrazine (N_2H_4) on pristine and decorated MoS_2 monolayer. In our work, we first focus on the interactions between several metal atoms and MoS_2 monolayer and then choose the MoS_2 nanosheet decorated by Sc_5 Ti₅ Cr and Mn to be the substrate. Furthermore, the properties of phenol and N_2H_4 on pure and X-doped (X=Sc₅ Ti₅ Cr and Mn) MoS₂ base materials are discussed in terms of adsorption energy, adsorption distance, charge transfer, charge density difference, HOMO and LUMO molecular orbitals and density of states (DOS). The results predict that the adsorption of phenol and hydrazine upon X-decorated MoS₂ monolayers are more favorable than the adsorption on isolated ones, which demonstrating that Sc_5 Ti₅ Cr and Mn-doped systems than the pristine one. The results confirm that X-doped MoS₂ monolayer can be used as effective and potential adsorbents for toxic phenol and hydrazine.

Keywords: MoS₂, Metal-decorated, Adsorption energy, DFT, C₆H₅OH and N₂H₄

1. Introduction

Phenol (C_6H_5OH) pollution in the environment mainly means the pollution of phenolic compounds (PCs) in water. The PCs are partially toxic, they will cause acute poisoning or even lead to coma or death when human inhale PCs with high concentrations. So it is necessary to find some effective methods to deal with these compounds. In recent years, a great number of relevant experimental studies have been accomplished[1, 2], while the theoretical works on toxic substances adsorption or detection were few[3-5]. Due to the limitations of the experimental conditions, we search for a more systematic and effective theoretical approach as an alternative for this problem.

Another toxic agent in waste-water, hydrazine (N_2H_4) , occurs naturally as product of microbial nitrogen fixation and has been detected in cigarette smoke. At room temperature, N_2H_4 is a colourless liquid with a penetrating odour. Used as an extraordinary energy material, anhydrous N_2H_4 is extensively applied in nuclear Download English Version:

https://daneshyari.com/en/article/7835304

Download Persian Version:

https://daneshyari.com/article/7835304

Daneshyari.com