Accepted Manuscript

Full Length Article

Mesoporous Cu₂O-CeO₂ Composite Nanospheres with Enhanced Catalytic Activity for 4-Nitrophenol Reduction

Juanjuan Pang, Wenting Li, Zhenhao Cao, Jingjing Xu, Xue Li, Xiaokai Zhang

PII:	S0169-4332(18)30059-X
DOI:	https://doi.org/10.1016/j.apsusc.2018.01.055
Reference:	APSUSC 38194
To appear in:	Applied Surface Science

Received Date:22 October 2017Revised Date:28 December 2017Accepted Date:6 January 2018

Please cite this article as: J. Pang, W. Li, Z. Cao, J. Xu, X. Li, X. Zhang, Mesoporous Cu₂O-CeO₂ Composite Nanospheres with Enhanced Catalytic Activity for 4-Nitrophenol Reduction, *Applied Surface Science* (2018), doi: https://doi.org/10.1016/j.apsusc.2018.01.055

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Mesoporous Cu₂O-CeO₂ Composite Nanospheres with Enhanced

Catalytic Activity for 4-Nitrophenol Reduction

Juanjuan Pang,^a Wenting Li,^a Zhenhao Cao,^a Jingjing Xu,^a Xue Li,^{a,*} Xiaokai Zhang^{b,*} ^aShandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan 250022, People's Republic of China ^bSchool of Physics and Electronics, Shandong Normal University,88 Wenhuadong Road, Jinan 250014, Shandong, People's Republic of China

E-mail: chm_lix@ujn.edu.cn; lixue0312@yahoo.com; djs@sdnu.edu.cn

Abstract

In this paper, mesoporous Cu₂O-CeO₂ nanospheres were fabricated via a facile, low-temperature solution route in the presence of poly(2-vinylpyridine)-b-poly(ethylene Oxide) (P2VP-b-PEO) block copolymers. The prepared mesoporous Cu_2O -CeO₂ nanospheres were characterized systematically by scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS) and nitrogen adsorption/desorption. The formation mechanism of mesoporous Cu₂O-CeO₂ nanospheres was discussed. The results show that the molar ratios of Ce^{3+}/Cu^{2+} and the reaction time have an important influence on the nanostructure of Cu₂O-CeO₂ composite spheres. The resultant Cu₂O-CeO₂ nanospheres exhibit superior catalytic activities in the reduction of 4-nitrophenol to 4-aminophenol by NaBH₄. The activity factor (K = k/m) for the Cu₂O-CeO₂

Download English Version:

https://daneshyari.com/en/article/7835337

Download Persian Version:

https://daneshyari.com/article/7835337

Daneshyari.com