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a b s t r a c t

This paper studies solids with internal degrees of freedom using the method of Cartan moving hedron.
Strain compatibility conditions are derived in the form of structure equations for manifolds. Constitutive
relations are reviewed and ultimate load theorems are proved for rigid plastic solids with internal
degrees of freedom. It is demonstrated how the above theorems can be applied in behavior analysis of
rigid plastic continual shells of shape memory materials. The ultimate loads are estimated for rotating
shells under external forces and in case of shape recovery from heating.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

This paper consists of two parts. The first section covers
ultimate load theorems [1–3] for solids with internal degrees of
freedom. Then these theorems are extended to deformable bodies
where internal degrees of freedom are represented by plastic
hinges of shape memory materials.

In the second section of the paper general considerations are
applied to the behavioral analysis of axially-symmetric continual
shells compiled of thin plates that are connected with rigid plastic
hinges.

2. General theory

Let us review a three-dimensional space (manifold) where
points are designated by vector r! in the fixed reference system.
Each point P would be associated with an orthogonal trihedral
while the letters e!1; e

!
2; e
!

3 would mean the unit vectors of its
axes. Let the space be filled with solids and the points ( r!þd r!)
close to r! shall be defined by the new trihedral with the unit
vectors of the axes that are different from the earlier introduced
d e!1; d e!2; d e!3. Decomposition of the vector differentials along
the axes of the original trihedral looks as follows [4]

d r!¼ωi e!i; d e!i ¼ωij e
!

j ð1Þ

Here ωi;ωij are differential forms that are linear against differ-
entials of initial variables αi. The domain of parameter variation is
designated as D¼ ðA1oα1;α2;α3oA2).

The forms ωi;ωij are not independent because of the relations

ð e!1Þ2 ¼ ð e!2Þ2 ¼ ð e!3Þ2 ¼ 1

e!1 e!2 ¼ e!2 e!3 ¼ e!1 e!3 ¼ 0

Six forms ω1;ω2;ω3;ω12;ω23;ω13 satisfy the equations of the
structure

dωi ¼ ½ωi
kω

k�; dωij ¼ ½ωikωkj�; ωi
k ¼ �ωik ð2Þ

The square brackets in formulas (2) mean exterior product of
the forms while dωij is an exterior differential of the form.
Relations of the structure (2) are continuity equations of the
deformable medium, the points of which can be attributed to
movements u!¼ r!1� r!, where r!1 is a location of the point P
after deformation in the fixed reference system.

In fact, if there is a solution to the system (2), there is also a
family of rectangular trihedrals so that the forms ωi;ωij cause
continuous manifold defined by vectors r! and r!1. Consequently,
in order for the Eq. (2) to describe continuous movements of
solids, they must contain as least six functions (parameters). But
the system (1) includes nine functions (components of the vector
u! derivates) and it accepts various solutions depending on the
property of the solids. Within the mechanics of deformable bodies,
additional dependences are obtained based on the motion (equili-
brium) equations and constituting equations between stresses and
strains. In other words, a symmetric tensor of stresses sij (six
independent components) is introduced and connected by means

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/ijmecsci

International Journal of Mechanical Sciences

http://dx.doi.org/10.1016/j.ijmecsci.2014.03.030
0020-7403/& 2014 Elsevier Ltd. All rights reserved.

n Corresponding author.
E-mail address: neustadt99@mail.ru (Y.S. Neustadt).

International Journal of Mechanical Sciences 83 (2014) 91–95

www.sciencedirect.com/science/journal/00207403
www.elsevier.com/locate/ijmecsci
http://dx.doi.org/10.1016/j.ijmecsci.2014.03.030
http://dx.doi.org/10.1016/j.ijmecsci.2014.03.030
http://dx.doi.org/10.1016/j.ijmecsci.2014.03.030
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijmecsci.2014.03.030&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijmecsci.2014.03.030&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijmecsci.2014.03.030&domain=pdf
mailto:neustadt99@mail.ru
http://dx.doi.org/10.1016/j.ijmecsci.2014.03.030


of the constituting equations to the vector u!. Then taking into
account the equilibrium (motion) conditions, a solvable system of
nine equations is deduced.

But using derivatives of the vector u! as variables is not an only
option. Keeping in mind application to rigid plastic bodies, we
assume that the forms ωi;ωij depend on n internal parameters
φi ði¼ 1;2:::nÞ, that have m dependencies like

Φlðφi;φi;tÞ ¼ 0; l¼ 1;2…m; φi;tðαiÞAL1ðDÞ;

φi ¼
Z t

0
φi;tðαi; sÞds ð3Þ

The inferior index t after the comma means derivative with
respect to time of the abstract function in the normed space L1(D).
Therefore the number of independent functions φi equals to p¼n–
m. It turns out that if pZ6, the system of Eq. (2) determines the
motion of the solid.

If po6, the solid can move only as an absolutely rigid body.
Let us review the most important case when p¼6, then the

continuum forms a mechanism, which geometry is defined by the
shape of the boundary ∂D within the domain D, while this
mechanism moves without any bulk forces. We will study slow
motions at constant temperature. In other words, we will replace
the displacement vector u! with the vector of velocities v!¼ u!;t
and will keep designations e!i for the unit vectors in the manifold
of the velocities.

We will supplement (2) with equations following the principle
of virtual power [5], that we will embrace the following way: there
exist functionsMi ðαjÞthat for any virtual functions φi ðαjÞsatisfying
(3), the identical Eq. (4) are metZ
D
Mi φi;t dV ¼

Z
D
Fivi dVþ

Z
∂D
Pivi dS ð4Þ

The letter D shall designate the domain filled with the solid,
while ∂D is its boundary surface. The expression dV means an
element of volume in point P and dS is an element of the boundary
surface area where the stress vector Pi is defined. The values Mi

represent internal stresses corresponding to virtual velocities φi;t .
The letters Fi; Pi designate vectors of the bulk and surface forces.
Since the parameters φi ðαjÞ are not independent, the identical Eq.
(4) generates n–m equations of equilibrium. If the connection
between the real values of Mi and φi is known for the solid, the
joint solution of (3) and (4) allows determining the stress-strain
condition. Henceforth, we will analyze the rigid plastic solid, for
which the correlation between Mi and φi look as follows:

φi;t ¼ λ
∂f
∂Mi

ð5Þ

if f ¼ k; ∂f =∂t ¼ 0; then λ40; if f ok; or f ¼ k; ∂f =∂to0,
then λ¼ 0.

The function of n variables can be specified as f ðMiÞ, assuming
that in case of f ðMiÞ ¼ k (here k is a constant), the function
intercepts a convex domain DT with the boundary ST in the n-
dimensional space (Fig. 1). In the ideal rigid plastic problem f ðMiÞ
is a homogeneous function of first degree, i.e. the below equality is

fulfilled for any number с.

f ðcMiÞ ¼ cf ðMiÞ ð6Þ
To be definite let us take

f ¼ ð12 a2i M2
i Þ1=2 ð7Þ

The book [6] demonstrates that the relations (1)–(5) are equal
to the problem of the functional minimum

Lðφi;tÞ ¼
Z
D
Πðφi;tÞdVþ

Z
D
Fivi dVþ

Z
∂D
Pivi dS ð8Þ

Here the dissipative potential Πðφi;iÞ is Young's transform of the
function

f nðMiÞ ¼ 0; if f rk and f nðMiÞ ¼1; if f 4k

Thus,

Πðφi;tÞ ¼ sup
Mi

ðφi;tMi� f nðMiÞÞ ð9Þ

The variables Mi are selected from the manifold of continuous
functions bounded above and φi;t is a space of measures within
the volume V. Repeating the arguments of the cited book, we will
obtain the following results on the movement of the solids in
question (ultimate load theorem):

Let Pi ¼ 0 and the load Fi is changing proportionally to the
parameter p

Fi ¼ pðtÞFi0 ð10Þ
In these conditions there exists a number p¼ pn that there is both
a minimum of the functional Lðφi;tÞ and such a solution to the
system when the condition (5) is met.

The function λðαiÞ is defined accurate to the constant. Mechani-
cally, the latter means that if p¼ pn, the unconfined flow of the
medium occurs.

The stresses in the points where plastic flow is observed are
located on the surface f ¼ ð12 a2i M2

i Þ1=2¼k, and the following equal-
ity takes place

W ¼
Z
D
Πðφi;tÞdV ¼ �

Z
D
Fivi dV ¼ �A ð11Þ

Here W is a rate of internal energy change and A is a power of
external forces.

The presented results admit transfer to shape memory materi-
als [7,8]. The plastic flow has the following special feature for
these materials. If there is one loading surface at “room” tempera-
ture T0

f ¼ ð12 a2i M2
i Þ1=2 ¼ k; ð12Þ

when the temperature is raised T0oT1o…Ti a new (inner)
surface appears (Fig. 2) that is similar to the outer surface with
the coefficient of similarity εi, so that ε14ε24…εi. The domain
bounded with the loading surfaces STi and STi

ε shall be designated
as DTi

ε . There exists a temperature, when the surface STi
ε collapses.

This temperature Tε is called shape restoration temperature.
Let us make sure that when the solid was strained at the

“room” temperature to φ0
i under external loading, it would get

Fig. 1. Loading surface of rigid plastic materials. Fig. 2. Loading surface of shape memory materials.
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