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a b s t r a c t

In the present study, free vibration of isotropic viscoelastic beams and plates on viscoelastic medium is
investigated. The Boltzmann superposition integral model with Dynamic Mechanical Analysis (DMA) results
is considered for viscoelastic material of the beam and plate to describe more accurately the behavior of
material rather than simple complex constants model. The viscoelastic beam and plate on viscoelastic
mediummodeling are used in railroad vibration with the damping layer on the lateral surface of the rail and
the polymeric flooring on the floor as a viscoelastic medium for the beam and the plate, respectively.
Weighted residual method and QZ algorithm are applied to obtain beam and plate natural frequency. In
addition, medium properties' effects on the natural frequencies of the beam and plate are discussed. For the
first time, critical damping of viscoelastic beam is presented due to the greater effect of medium viscosity at
all boundary conditions. The unknown coefficients of dynamic response function are calculated by Fourier
transform. Closed form expressions are obtained for lateral displacement of the beam and plate with various
boundary conditions in terms of complex natural frequency, mode numbers, geometry parameters, initial
conditions, material and medium properties. Results show excellent agreement with relative studies.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Damping is an important step in understanding the dynamic
behavior of various structural elements, which should be consid-
ered by designers. Inherent damping and its time-dependent
variation could be presented in the form of viscoelastic material
model, which should be applied on the constitutive equation. In
fact, material properties such as Poisson's ratio, shear, bulk and
Young's moduli are time-dependent in viscoelastic materials.
However, depending on the problem circumstances, these proper-
ties could be presented in terms of time or frequency. Among the
well-known models for viscoelastic materials, one may refer to the
Maxwell, the Kelvin–Voight and their progressive models that
have been used by many scientists, see for instance [1–6]. Power
decrement series with prony series and fractional derivatives are
also used in time and frequency domains, respectively [7–9]. Prony
series have merits including comfortable transition between time
and frequency domain and suitable curve fitting for experimental
data such as [10–12] for bulk and shear moduli. A detailed review
of these models for structural and vibration control can be found
in [13,14].

The perfect model within the linear viscoelastic models is the
Boltzmann superposition integral, which represents material beha-
vior in arbitrary time intervals with infinitesimal steps that present
any material variation. DMA results for bulk K, and shear G, moduli
in conjunction with Alfrey's correspondence principle lead to the
determination of Young's modulus and Poisson's ratio, as done by
Kiasat et al. [10,15]. Therefore, the outputs may be embedded in the
Boltzmann integral to determine time-dependent stiffness matrix
components for plates or relaxation modulus and flexural rigidity for
viscoelastic beam. This procedure represents the exact behavior of
relaxation modulus and flexural rigidity in time or frequency
domains without any simplifying assumption such as constant
Poisson's ratio, bulk or shear moduli. Although these properties
are deemed as constant values in various studies [16–21], this would
be a disputed assumption within the viscoelastic research commu-
nity, see for instance [22–27]. In an experimental theoretical
research, Kiasat et al. [27] obtained the increasing behavior of the
Poisson’s ratio during the creep test for an epoxy compound.

Viscoelastic behavior of foundation is another striking factor
for dissipating energy in continuous systems such as beam and
plate on flexible foundation. Foundation viscosity is investigated in
many researchers, see for instance [28–30], in which the Euler–
Bernoulli beam was investigated with simply supported boundary
conditions (B.Cs). Infinite Timoshenko beam on linear and non-
linear viscoelastic foundations under moving load was studied by
Kargarnovin et al. [31,32]. In addition, numerical method for beam
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on viscoelastic foundation is employed to obtain solutions in time
domain from the Laplace domain [33–35]. MacBain and Genin [36]
and Sheng et al. [37] considered energy dissipation in viscoelastic
Timoshenko beam on viscoelastic medium using complex con-
stants for impeccable and damage states, respectively. According
to literature survey, two important remarks seem to be missing.
The first one is that, despite the use of higher order theories such
as Timoshenko and Mindlin theories, DMA results have not been
used directly for this case. Recently, Zamani and Kiasat [38]
investigated free vibration of viscoelastic beams and plates on
viscoelastic foundation only with simply supported B.Cs. The other
B.Cs investigation is the second one that seems to be missing.

In this study, semi-analytical solutions are presented for vibra-
tion of viscoelastic Euler–Bernoulli beam and Kirchhoff–Love plate
on viscoelastic medium with various B.Cs. Viscoelastic behavior of
material is modeled with Boltzmann superposition integral using
DMA results from Kiasat’s work [10]. Viscoelastic medium beha-
vior is modeled with parallel springs and dashpots as the Kelvin–
Voight model. Effects of various parameters such as mode num-
bers, viscosity of medium and material are studied on the beam
and plate complex natural frequencies by the iterative QZ algo-
rithm, which is applied by Damanpack et al. [39]. For the first time,
critical damping due to foundation viscosity is presented for the
beam with different B.Cs. According to the complex natural
frequency, unknown coefficients of dynamic response are calcu-
lated by Fourier transform. It is found that viscosity of foundation
has remarkable effects on natural frequency for both beams and
plates. These effects are even more critical in dynamic response of
the beams, which may cause non-vibrational motion, i.e. critical or
over-damped states. Finally, foundation properties and B.Cs effects
are investigated on the dynamic response of beams and plates.

2. Governing equation

A rectangular thin isotropic viscoelastic plate on viscoelastic
medium as shown in Fig. 1 with dimensions a, b and h as length,
width, and thickness in the x, y, and z directions, respectively, is
considered. Furthermore, a deformed section area of thin isotropic
viscoelastic beam is depicted in Fig. 2 in which dimensions L and
h0 refer to the length and thickness in the x and z directions,
respectively. A cured polymeric resin is considered for both cases
of the beam and plate; also material properties are extracted from
the DMA test [10].

2.1. Viscoelastic plate

In order to accurately determine the time-dependent definition
of Young's modulus and Poisson's ratio of the material, the direct
approach is employed. The Boltzmann superposition principle is
used to define time-dependent constitutive equation for plane

stress state as
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where s, ε, ξ and Cij are stress, strain, Boltzmann integral variable
and stiffness matrix element, respectively, which in the last case is
defined for elastic material as
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where υ and E are Poisson's ratio and Young's modulus, respectively.
Applying Alfrey's correspondence principle for material properties
leads to

sC11ðsÞ ¼
sEðsÞ
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where s is the Laplace variable. Superior bar signifies average value
of properties in Laplace domain. Simplifying and using Laplace
inverse (L�1) operator leads to the time dependent stiffness matrix
elements as
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It should be noted that the Young's modulus and Poisson's ratio
could not be extracted directly from DMA results. Therefore, as an
alternative to DMA, the same procedure can be employed to obtain
properties in the Laplace domain using

EðsÞ ¼ 9KðsÞGðsÞ
3KðsÞþGðsÞ

ð9Þ

υðsÞ ¼ 1
s
3KðsÞ�2GðsÞ
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Substitution of Eqs. (9) and (10) in Eqs. (6) and (7) leads to
time-dependent stiffness matrix elements in terms of DMA results
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Fig. 1. Schematic and geometry of viscoelastic plate on viscoelastic medium.

u=-zw,x

z

w, x

x 

Fig. 2. Beam deformed section area on viscoelastic foundation. Solid and dashed
arrows are spring and dashpot respectively.
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