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a b s t r a c t

In this work, a semi-analytic solution is developed for multiple cracks and inhomogeneous inclusions of
arbitrary shape beneath a half-space surface subject to contact loading. The contacting surfaces can have
roughness. The solution takes into account the interactions among all the inclusions and cracks as well
as the interactions between them and the surface loading body. Thus, it is capable of providing an
accurate description of the surface contact area and pressure and the subsurface stress field. In
developing the solution, each inhomogeneous inclusion is modeled as an homogeneous inclusion with
initial eigenstrain plus unknown equivalent eigenstrain using Eshelby’s equivalent inclusion method;
each crack of mixed modes I and II is modeled as a distribution of glide and climb dislocations with
unknown densities. As a result, the inhomogeneous half-space contact problem is converted into a
homogenous half-space contact problem with unknown surface contact area and pressure distribution.
All the unknowns are integrated by a numerical algorithm and then determined iteratively by using the
conjugate gradient method. Computational efficiency is achieved by using the fast Fourier transform
algorithm. The solution is general and robust and will potentially have wide applications for reliability
analysis of heterogeneous materials, in particular their wear and contact fatigue analysis.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Micro-defects such as inclusions, voids and cracks in materials
can not only affect their functionality and performance but also
may cause their eventual failure. When these defects are located
near a material surface subject to cyclic contact loading, their
damage effect becomes more prominent. Such damage analysis
requires an accurate knowledge of the surface contact area and
pressure and the subsurface stress field in the presence of both
inclusions and cracks, which however poses tremendous challenge
for study.

Inclusions can be classified into homogeneous inclusions, inho-
mogeneities and inhomogeneous inclusions [1]. A homogeneous
inclusion has the same elastic moduli as the surrounding matrix but
contain eigenstrain, a generic term for inelastic strain such as plastic
strain, misfit strain and thermal strain [1]. A homogeneity has
different elastic moduli than the matrix but does not contain
eigenstrain. An inhomogeneous inclusion not only has material
dissimilarity as compared to the matrix but also contains eigen-
strain. For convenience, a void can be regarded as an inhomogeneity
of zero elastic moduli.

Numerous works have been reported on the study of inclusions
and their interactions with other defects such as cracks, disloca-
tions and disclinations (see e.g., [2–15]). More related works can
be found in recent review by Zhou et al. [16]. However, few studies
have been conducted on inclusions beneath surfaces subject to
contact loading because of complexity arising from the fact that
both the surface loading body and the subsurface inclusions affect
the surface deformation and thus the surface pressure distribution
and subsurface stress field.

The earliest work that can be found in the literature was
conducted three decades ago by Miller and Keer on a two-
dimensional (2D) cylindrical void or rigid inhomogeneity in a
half-space under cylindrical indentation using the complex vari-
able formulation [17]. Afterwards, almost no progress had been
made in this topic for long time.

Recently, Kuo investigated multiple inhomogeneities of 2D
arbitrary shape in a half-space under cylindrical indentation using
the boundary element method [18]. More recently, Zhou et al. first
applied Eshelby’s equivalent inclusion method (EIM) [19] but
bypassed the complicated Eshelby’s tensor to solve multiple
inhomogeneous inclusions of 3D arbitrary shape in an infinite
space and in a half-space [20,21]. They then applied the same
approach in conjunction with the theory of contact mechanics to
solve the inhomogeneous inclusion problem with contact loading
involved [22]. Leroux et al. conducted contact analysis in the
presence of spherical inhomogeneities within a half-space using
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the EIM [23]. Chen et al. studied the interaction between disloca-
tion and subsurface crack caused by half-plane contact [24].

On one hand, both cracks and inclusions can be formed during
material manufacturing process. On the other hand, inclusions
often cause stress concentration that may cause crack nucleation
and propagation. Thus, the present paper aims to address such a
more challenging but practical problem about multiple inhomo-
geneous inclusions of arbitrary shape and cracks subject to contact
loading.

2. Model development

2.1. Problem description and solution approach

This study considers a 2D plane-strain problem about multiple
inhomogeneous inclusions Ωψ ðψ ¼ 1;2; :::;n1Þ and cracks Γφðφ¼
1;2;…;n2Þ near a half-space surface subject to sliding/rolling
contact loading in the xOy Cartesian coordinate system, as shown
in Fig. 1(a). Each inclusionΩψ can be of arbitrary shape. Each crack
Γφ is assumed to be horizontally or vertically aligned. Never-
theless, a slant crack can be modeled as a zigzag crack consisting of
many small vertical and horizontal cracks. The loading body is
assumed to be cylindrical and has the radius R.

The inhomogeneous inclusion Ωψ contains initial eigenstrain εPij
and its elastic moduli is denoted by Cψijkl ði; j; k; l¼ 1;2Þ; the half-

space matrix has the elastic moduli Cijkl. The cylindrical loading body
is isotropic and has Young’s modulus Es and Poisson’s ratio vs.

When an external load W is applied on the upper loading body,
a contact area is formed between it and the lower half-space. The
normal pressure and tangential friction within the contact area not
only causes the deformation of the two contacting surfaces but
also induces the responses of subsurface cracks and inhomoge-
neous inclusions. These subsurface responses also change the
surface deformation, which in turn changes the contact pressure
and friction distributions. Thus, there exists an interaction
between the surface loading body and the subsurface cracks and
inhomogeneous inclusions.

The inhomogeneous half-space contact problem is solved by
converting it into a homogenous half-space contact problem
through the EIM and the dislocation distribution technique
(DDT) [25]. Using the EIM, each inhomogeneous inclusion is
modeled as a homogeneous inclusion with initial eigenstrain εPij
plus unknown equivalent eigenstrain εnij to be determined; using
the DDT, each crack is modeled as a distribution of climb and glide
dislocations with unknown densities ρ? and ρ‘ to be determined
(Fig. 1(b)).

The new homogenous half-space contact problem is then decom-
posed into two sub-problems: (1) the half-space sub-problem to
determine subsurface equivalent eigenstrains εnij and dislocation ρ?

and ρ‘ for a prescribed surface loading, and (2) the homogenous
half-space contact sub-problem to determine the surface deforma-
tion, contact area and loading distribution for a given external load
applied on the loading body. The two sub-problems should be
correlated because of the above-discussed interaction between the
surface loading body and subsurface cracks and inhomogeneous
inclusions (or dislocations and eigenstrains that model them). This
correlation is realized by an iterative algorithm that determines the
final surface deformation due to both the surface loading body and
subsurface micro-defects.

2.2. Half-space sub-problem with prescribed surface loading

When stresses within the equivalent homogeneous inclusions
(Fig. 1(b)) are concerned, the utilization of Hooke’s law and stress
superposition gives the following governing equation:

CψijklC
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klmqðsP
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mqþsc
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ij�sc
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where sP
ij is the eigenstress at a point within an inclusion caused

by all the initial eigenstrains εPij within all the inclusions; sn

ij is the

eigenstresses caused by all the equivalent eigenstrains εnij; s
c
ij is the

stress caused by all the cracks; s0
ij is the stress caused by

prescribed surface loading or external loading. Eq. (1a) is similar
to the governing equation obtained in the study of multiple
homogeneous inclusions in half-space subjected to prescribed
surface loading [21], except that it contains the extra term of s0

ij.

Thus, detailed derivation is suppressed here for brevity.
In this model, the two surfaces of a crack are assumed not

to be in contact with each other. When stresses along the cracks
(Fig. 1(b)) are concerned, the conditions of free-surface traction
should be satisfied:

sP
ijþsn

ijþsc
ijþs0

ij ¼ 0; ðφ¼ 1;2;…; n2; j¼ 1;2Þ along Γφ

ð1bÞ
where i¼ 1 and i¼ 2 for a crack perpendicular to the x-axis and
y-axis, respectively.

Eqs. (1a) and (1b) are the governing equations for solving the
inhomogeneous inclusion and crack problem. Next, numerical
methods are introduced to solve them.

A computational domain is set to contain all the cracks Γφ and
inclusions Ωψ and discretized into Nx � Ny square elements of the
same size 2Δx � 2Δy (Fig. 2). Each element is indexed by ½α; β�

Fig. 1. (a) The original inhomogeneous half-space contact problem, and (b) the equivalent new homogenous half-space contact problem.
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