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a b s t r a c t

Considering the self-excited and forced vibrations in peripheral milling processes, a novel optimization
method of cutting parameters is presented. The optimization method proposed, which is based on the
vibration frequency analysis during milling processes, can achieve the most stable cutting process in
relative stable region (or conditional stable region). First, relationships between vibration frequencies
and phase angle of tooth of cutter in milling processes are investigated. Four kinds of spindle speeds
associated with several bifurcations and vibrations are defined. Second, chatter-free regions are
subdivided according to these spindle speeds. It is shown that in the so-called subregion C, cutting
parameters can be simultaneously optimized for higher material removal rate (MRR) and higher surface
accuracy. Third, optimal control theory is employed to determine the optimal cutting parameters, which
can achieve the most stable cutting process in relative stable region. Optimizations of spindle speeds and
depth of cut are conducted by using the stability charts and performance contours diagrams. The results
show that the optimal cutting parameters can also be obtained in the so-called subregion C. Finally, the
numerical results are verified and analyzed through milling experiments.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Productivity and surface quality in milling processes have
direct effects on cost, production lead time and quality of
machined parts, in which vibration is one of the most common
detrimental phenomena and major obstructions towards achiev-
ing automation, higher productivity, and better surface finish that
is directly subjected to the dynamic characteristics of system in
high-speed and high-precision milling machines. Such dynamic
characteristics are dependent on the milling cutting parameters
and structural parameters. Therefore, optimizations of system
parameters are highly needed in order to achieve higher produc-
tivity and better surface finish.

The vibrations in milling process include three parts, i.e. free
vibration, forced vibration and self-excited vibration (chatter).
Chatter vibration due to the dynamic interactions between tool
and workpiece has been widely studied in the past one century
since Taylor first identified and described chatter in 1907. After the
extensive work of Tobias [1] and Smith et al. [2], a constant time
delay dynamics model for stability analysis of two-dimensional
milling process using harmonic balance and infinite determines

was improved [3]. A linear discrete-time model was given to
analyze stability in case of low radial immersion milling [4].
Stability of milling processes with variable time delays including
the effect of feed ratio was presented using the semi-discretization
method [5–8]. Based on the robust stability theorem, a novel
method to predict chatter-free regions for machining processes
was provided, by taking in account the unknown uncertainties and
changing dynamics for machining [9]. All these authors present a
fundamental understanding of regenerative chatter as a feedback
mechanism for the growth of self-excited vibrations due to
variations in chip thickness and cutting force and subsequent tool
vibration. These studies have led to graphic charts (stable chart)
showing the stability information as a function of chip thickness
and spindle speed; and stable region can be subdivided into so-
called relative stable region (or conditional stable region) and
absolute stable region (or unconditional stable region) [10].

A wide range of researches have also been conducted to
determine the optimal parameters (e.g. the feed rate [11], the
depth of cut [12], and the spindle speed [13]) and avoid chatter for
machining, including variable helix mills [14,15], variable spindle
speed [16,17] and force control [18]. Zheng et al. [19] adapted a
modified FRF concept to determine the worst/best spindle speeds
and the critical limiting axial depth of cut. The motivation of
optimization methods established for cutting parameters in the
literatures is mainly to achieve the stable cutting processes.
Therefore, chatter stability is investigated in the most optimization
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methods, while the resonance due to the forced vibration has not
been considered. The stability boundary has a typical ‘lobed’
structure. The location of stability maxima is where resonance
due to forced vibration occurs [20,21]. The surface location error
corresponding to the location of stability maxima is very poor [22–
25]. Thus, the influences of self-excited and forced vibrations
should be considered in dynamic optimization of milling system,
simultaneously. Additionally, in order to achieve the most stable
cutting, for optimization methods presented in literatures, the
cutting parameters must be selected in the absolute stable region
described in Ref. [10], where the stable limit is very low.

Thus, the present work is to establish a novel method for
optimal cutting parameters in high-speed milling system consid-
ering influences of self-excited and forced vibrations. The most
stable cutting can be achieved in relative stable region. The paper
is organized as follows. In Section 2, dynamic models and analysis
methods for milling processes, such as dynamic model, stability
analysis, vibration frequencies and resonance, are introduced
briefly. In Section 3, subdivision of chatter-free region is conducted
based on the analysis of relationship between vibration frequen-
cies and cutting phase difference. The optimal cutting parameters
are determined in Section 4, and validation experiments are
performed in Section 5. Section 6 concludes the paper.

2. Dynamic models and analysis method

2.1. Dynamic model for milling processes

Milling tool with diameter D (mm) and the number N of teeth
can be considered to have two orthogonal degrees of freedom as
shown in Fig. 1, ae is the radial depth of cut, and Ω is the constant
rotational angular velocity. Cutting forces excite the structure in
the feed (x), and normal (y) directions, causing dynamic displace-
ments x and y of tool in x and y directions, respectively. The
governing equation for the 2-DOF oscillator has the form [22]

M €uðtÞþC _uðtÞþKuðtÞ ¼ FðtÞ ¼ SðtÞþQ ðtÞ ð1Þ
where, M, C, and K are the modal mass, damping, and stiffness
matrices, respectively. The tool is assumed to be modeled as a
symmetric beam; its modal parameter matrices are diagonal with
the same diagonal values. u(t)¼[x(t) y(t)] expresses the vibration
displacements vector. F(t) is the cutting force vector, which
decomposed in S(t) and Q(t). S(t) is the T periodic self-excited
force vector which induces chatter vibration, and S(t)¼S(tþT). Q
(t) is the T periodic stationary cutting force vector which induces
forced vibration, and Q(t)¼Q(tþT). If there is no runout, then the
periodic T of S(t) and Q(t) is the tooth passing period τ, τ¼2π/

(NΩ); if including the runout of tool, the periodic T is spindle
rotation period, T¼Nτ.

The self-excited force vector S(t) can be expressed as

SðtÞ ¼
SxðtÞ
SyðtÞ

( )
¼ apkðtÞuðt; t�τÞ ð2Þ

where, ap is the axial depth of cut. u(t,t�τ)¼u(t�τ)�u(t)
expresses the relative displacement for successive two teeth of
cutter. The elements of the so-called specific cutting force varia-
tion matrix k(t), which is 2�2 matrix, are

kxxðtÞ ¼ ∑
N

i ¼ 1
δðφiðtÞÞ½Kt cos φiðtÞþKr sin φiðtÞ� sin φiðtÞ

kxyðtÞ ¼ ∑
N

i ¼ 1
δðφiðtÞÞ½Kt cos φiðtÞþKr sin φiðtÞ� cos φiðtÞ

kyxðtÞ ¼ ∑
N

i ¼ 1
δðφiðtÞÞ½�Kt sin φiðtÞþKr cos φiðtÞ� sin φiðtÞ

kyyðtÞ ¼ ∑
N

i ¼ 1
δðφiðtÞÞ½�Kt sin φiðtÞþKr cos φiðtÞ� cos φiðtÞ ð3Þ

here, δ(φi(t)) is a Heaviside step function that assumes a value one
when the cutting tooth is engaged in cutting process and zero
when the tool is out of the cut. Kt and Kr are the tangential and
radial cutting coefficients, respectively. φi(t)¼Ωtþ(i�1)2π/N is
the location of the ith tooth.

The stationary cutting force vector Q(t) is written as

Q ðtÞ ¼
QxðtÞ
QyðtÞ

( )
¼ apf z

kxxðtÞ
kyxðtÞ

( )
ð4Þ

where fz is the feed per tooth.
The vibration of cutter is composed of self-excited vibration

(chatter) and forced vibration, and the motion is decomposed in
the form

uðtÞ ¼ upðtÞþueðtÞ ¼
xpðtÞ
ypðtÞ

( )
þ

xeðtÞ
yeðtÞ

( )
ð5Þ

where up(t)¼up(tþT) is the forced periodic chatter free motion of
the tool, and ue(t) is a perturbation corresponding to the self-
excited vibrations of the tool. Substitution of Eq. (5) into Eq. (1)
results in the equation of forced vibration

M €upðtÞþC _upðtÞþKupðtÞ ¼Q ðtÞ ð6Þ
and, the equation of self-excited vibration

M €ueðtÞþC _ueðtÞþKueðtÞ ¼ SðtÞ ¼ apkðtÞueðt; t�τÞ ð7Þ
A wide range of researches have been conducted to the

dynamic optimization of milling system based on chatter vibra-
tions [12–18], which is presented in Eq. (7), delay differential
equation (DDE). In the paper, the self-excited (Eq. (7)) and forced
(Eq. (6)) vibrations are considered in parameters optimization of
milling system, simultaneously.

2.2. Stability analysis of self-excited vibration

Stability of the machining process can be estimated theoreti-
cally via the analysis of the governing Eq. (7). Delay differential
equations are usually associated with infinite dimensional phase
spaces that can present several analysis difficulties. The stability
properties are described by the eigenvalues of the (infinite
dimensional) monodromy operator. The eigenvalues of this mono-
dromy operator are the characteristic multipliers. The system is
asymptotically stable if all the characteristic multipliers are in
modulus less than 1. Since delayed systems usually have infinitely
many characteristic multipliers, their stability conditions cannot
be given analytically, but there exist several numerical and
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Fig. 1. 2-DOF peripheral milling model.
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