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a b s t r a c t

The modern dynamical systems of various physical natures, such as natural, social, economic, and technical
ones, are complexes of various subsystems. They are connected by processes of intensive dynamic interaction
and exchange of energy, matter, and information and incorporate nonlinear dynamics, memory, complicated
transients, bifurcation and chaotic motion modes. Particularly, synergetics as a very young discipline deals
with complex systems, i.e. it is concerned with the spontaneous formation of macroscopic spatial, temporal,
or functional structures of systems via self-organization and is associated with systems composed of many
subsystems, which may be of quite different natures. Synergetics take into account deterministic processes as
treated in the dynamic systems theory including bifurcation theory, catastrophy theory, as well as basic
notions of the chaos theory and develops its own approaches. Here, the fundamental basis of nonlinear theory
of system's synthesis based on synergetics as well as fractional calculus approach in modern control theory
together with its application will be presented. The difference of synergetic approach from the classical
scientific methods is in identification of the fundamental role of self-organization in nonlinear dynamic systems
and it is necessary to keep the conceptual correspondence to the main qualities of self-organization:
nonlinearity—open systems—coherence. Synergetic approach is based on the natural homeostatic-conser-
vation of the internal qualities of the dynamic systems of various natures. Namely, Russian scientist A.A.
Kolesnikov developed a novel synergetic approach based on the ideas of modern mathematics, cybernetics,
and synergetics to the synthesis of control systems for nonlinear, multidimensional and multilinked dynamic
systems of various natures. The synergetic approach to control theory (synergetic control theory-SCT) is a
novel nonlinear control method where the nonlinearities of a system are considered in the control design and
a systematic design procedures. The invariants (synergies) and attractors, introduced as the main element of
SCT, allow establishing direct link to the energy conservation laws, i.e. to the fundamental qualities of various
objects. So, invariants, self-organization, and cascade synthesis are the fundamental notions of the SCT
determining its essence, novelty, and content. Also, fractional calculus (FC) has a long history of three hundred
years, over which a firm theoretical foundation has been established. All fractional operators consider the
entire history of the process being considered, thus being able to model the non-local and distributed effects
often encountered in natural and technical phenomena and they provide an excellent instrument for
description of the memory, heredity, non-locality, self-similarity, and stochasticity of various materials and
processes. Fractional dynamics can be encountered in various nonlinear dynamical systems such as visco-
elastic materials, electrochemical processes, thermal systems, transmission and acoustics, chaos and fractals,
biomechanical systems, and many others. The fractional dynamic systems with nonlinear control represent a
relatively new class of applications of the FC which certified the FC as being a fundamental tool in describing
the dynamics of complex systems as well as in advanced nonlinear control theory.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The last decade has witnessed a tremendous attention devoted to
both modeling and simulation of nonlinear dynamical systems [1–7].

This high interest is due to the growing awareness that nonlinear
dynamics are inherent in a vast class of systems, phenomena, and
events: natural biological systems, physical systems, engineering
systems, etc. A study of the relevant state-of-the-art reveals various
scientific contributions based on modeling, simulation, and control of
nonlinear dynamical systems [1–4]. As we know, many things in
nature don't act in linear way, i.e. whenever parts of a system

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/nlm

International Journal of Non-Linear Mechanics

http://dx.doi.org/10.1016/j.ijnonlinmec.2014.11.011
0020-7462/& 2014 Elsevier Ltd. All rights reserved.

n Tel.: þ381 62 295 865.
E-mail address: mlazarevic@mas.bg.ac.rs

International Journal of Non-Linear Mechanics 73 (2015) 31–42

www.sciencedirect.com/science/journal/00207462
www.elsevier.com/locate/nlm
http://dx.doi.org/10.1016/j.ijnonlinmec.2014.11.011
http://dx.doi.org/10.1016/j.ijnonlinmec.2014.11.011
http://dx.doi.org/10.1016/j.ijnonlinmec.2014.11.011
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijnonlinmec.2014.11.011&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijnonlinmec.2014.11.011&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijnonlinmec.2014.11.011&domain=pdf
mailto:mlazarevic@mas.bg.ac.rs
http://dx.doi.org/10.1016/j.ijnonlinmec.2014.11.011


interfere, or cooperate, or compete, there are nonlinear interactions
going on and the principle of superposition fails spectacularly. Most
of everyday life is nonlinear, and for nonlinear systems, there's
typically no hope of finding the trajectories analytically. Even when
explicit formulas are available, they are often too complicated to
provide much insight. The nonlinear systems are connected by
processes of intensive dynamic interaction and exchange of energy,
matter, and information and incorporate nonlinear dynamics, mem-
ory, complicated transients, bifurcation and chaotic motion modes.
Various interesting and striking states of nonlinear systems are of
particular interest: periodic, quasi-periodic, stable, unstable, deter-
ministic, stochastic, synchronized, torus and chaotic dynamics, etc.
[5–7]. Thus, nonlinearity generates various phenomena that are
difficult for us to comprehend. Nonlinearity is indispensable to create
a complex system. For example, papers [8,9] provide a review of the
results in the field of nonlinear mechanics which include a huge class
of hybrid dynamical systems. Special attention is devoted to the
development of Lyapunov's methods and the averaging theory which
allowed solutions to a wide range of problems of the nonlinear
dynamical systems.

On the other side, the most important feature of the nonlinear
world is that disparate space–time scales (e.g., macroscopic and
microscopic scales) can interfere with each other. Consequently, events
of the world directly observable on our own space–time scale are,
generally speaking, not closed within themselves. That is, to under-
stand a phenomenon occurring within our human space–time scale,
we must often take into account the things happening at space–time
scales disparate from ours. What we investigate is the joint action of
many subsystems (mostly of the same or of few different kinds) so as
to produce structure and functioning on a macroscopic scale. The so-
called chaos clearly exhibits consequences of this intrusion of the
unknowable (at small scales) into the world we experience directly.
These intrusions of the unobservable into our directly observable
world make the world we wish to comprehend not self-contained.
Hereby, it has become more and more evident that there exist num-
erous examples of nonlinear dynamical systems where well organized
spatial, temporal, or spatio-temporal structures arise out of chaotic
states [1–4]. The spontaneous formation of well organized structures
out of germs or even out of chaos is one of the most fascinating
phenomena and most challenging problems scientists are confronted
with. In contrast to man-made machines, which are devised to exhibit
special structures and functionings, these structures develop spon-
taneously - they are self-organizing. The spontaneous formation of
structures, or the phenomenon of self-organization, appears in a huge
variety of systems: from crystals and living cells to spiral galaxies
[10,11]. Probably one of the first to use term “self-organizing” system
was Ashby in 1947 [12]. The ultimate goal of genuine complex systems
studies must be, from this point of view, to accomplish conceptual
analysis of complexity and to construct a phenomenology of nonlinear
systems or more general-complex systems.

In philosophy the term ‘phenomenology’ is said to have
appeared first in Novum Organum(1764) by a Swiss mathematician,
Lambert (1728–1777), in the sense now being used [1]. The
modern usage of word ‘phenomenology’ is initiated by Husserl
[13]. His motto was “to phenomenon itself and this word was based
on quite anti-metaphysical viewpoint” (the attitude to study Nature
based only on the comparison and descriptions of observable
phenomena) [1,14,15]. At approximately the same time, i.e in 1911,
Serbian scientist Mihailo Petrovic Alas has published his first work
entitled Elements of mathematical phenomenology [16] and later
[17] where he discussed the phenomenology of various natural,
technological, and social phenomena. In book [16] he stated:

“It happens that disparate phenomena, grouped into qualitative
groups, identified by the common qualitative details of, emphasize,
in the core of mutual analogy, what factors are of particular

phenomenological interest that can still be used for the common
phenomenological disparate phenomena or which under some
circumstances, by unifying and making schematic mechanism of
phenomena, thus giving them a type of mathematical analysis,
thereby making possible their introduction into the problem”.

The term “mathematical phenomenology” began to be used at the
end of the XIX century, in parallel with the development of the
positivist school of philosophy by famous scientists, the Austrian
physicist Ludwig Boltzmann [18] and German physicists Gustav
Kirchhoff and Heinrich Hertz. Boltzmann points out at Kirchhoff
and his school as a representative of the mathematical phenomen-
ology [18]. Mathematical phenomenology is the presentation of the
phenomenon of mathematical analogies according to Boltzmann.
Since the end of the first decade of the XX century to the present,
with the exception of work related to Mihailo Petrovic Alas, there
are very few references in the literature on the term “mathematical
phenomenology” [19]. However, it should be noted that there are
scientists, journals, and scientific conferences that are now at the
relationship of mathematics and phenomenology [15].

As can be seen from its history, in contrast to atomism, phen-
omenology implies that it is confined to superficial description of
phenomena, never trying to go beyond them [7]. We can say ‘we
understand something,’ or ‘we know something,’ when we know
common features of a set described by this ‘something,’ if this
‘something’ is a common noun. When we understand something,
some sort of generalization (or abstraction) is always involved and
this presents the core of phenomenological understanding. More-
over, we can say the phenomenological understanding of the world
may be a viewpoint that emphasizes ‘essence’ more than ‘existence.
To understand the world phenomenologically is to dissect the world
into a set of phenomena each of which can be understood by a
particular phenomenological framework. We could even say that a
‘phenomenon realized in a certain system’ is a representation of
(often mathematical and abstract) ‘universal structure’ in terms of
the concrete system. Phenomenological understanding is often
detached from materials, so it has to be mathematical. In fact, to
pursue phenomenological understanding is to explore a minimal
mathematical structure behind a set of phenomena. If we have a
reasonable mathematically expressed model of these phenomena, it
is likely that a renormalization approach can extract the phenom-
enological theory common or universal to them [7,15]. We could
even say that a ‘phenomenon realized in a certain system’ is a
representation of (often mathematical and abstract) ‘universal
structure’ in terms of the concrete system. Here, our intention is
to present mathematical phenomenology of self-organization of
nonlinear dynamical systems of various natures based on syner-
getics as well as fractional calculus approach, particularly in modern
control theory. Many different disciplines cooperate here to find
general principles governing self-organizing systems. The difference
of synergetic approach from the classical scientific methods is in
identification of the fundamental role of self-organization in non-
linear dynamic systems.

Synergetics is a very young discipline and many surprising
results are still ahead of us. First of all, synergetics was established
by Haken [20] but there are many fundamental researches to
support its theoretical structure. Besides, Haken's school [20–22]
of synergetics, the processes of self-organization are studied also
the by Russian scientists (topics of nonlinear (autowave) processes)
[23–25] as well as Brussels school of Ilya Prigorine [26,27]. Each one
of the three schools arrives at the idea of self-organization from
different starting points, stresses different aspects of it and, corre-
spondingly, builds a different theoretical instrumentation. Syner-
getics in a narrow sense, i.e the one developed by Haken's school,
puts the emphasis on the coherent behavior of the parts of the
systems. According to Brussels school [26,27], self-organization is a
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