
Fast non-resonance rotations of spacecraft in restricted three body
problem with magnetic torques

Pavel Krasil'nikov
Department of Differential Equations, Moscow Aviation Institute, Volokolamskoe Shosse, 4, 125993 Moscow, Russia

a r t i c l e i n f o

Article history:
Received 6 March 2014
Received in revised form
11 August 2014
Accepted 3 November 2014
Available online 13 November 2014

Keywords:
Three body problem
Magnetic torque
Spacecraft rotations
Angular momentum vector

a b s t r a c t

Fast non-resonance rotations of spacecraft around center of mass in restricted three body problem with
magnetic torques are considered. It is supposed that one of primary bodies has a magnetic field, the
spacecraft has magnets such that the magnetic torque is constant in the frame connected with spacecraft.
In addition, it is supposed that spacecraft orbit is described by quasi-periodic functions of time, the angular
speed of spacecraft rotations much more than the elliptical mean motion of primary bodies.

The averaged Hamiltonian of problem is obtained. For different parameters Dj which are functionals on a
set of spacecraft orbits, the evolution of angular momentum vector of spacecraft is investigated. It is shown
that the increase of the magnetic torque leads to the magnification of the inclination for angular momentum
vector. In limiting case when gravitational torques can be neglected, the angular momentum vector will be
parallel to the plane of the rotation of primary bodies.

It is shown that there is a mathematical analogy between the purely magnetic rotations and gravitational
rotations in plane orbits whenever bifurcation parameter N is unit.

& 2014 Elsevier Ltd. All rights reserved.

1. Problem statement: Hamilton function

The investigation of spacecraft attitude motion in the central
gravitational field with magnetic torques was given in [1–4]. Let us
consider the non-resonance rotations of rigid spacecraft in the
gravitational field of two main bodies m1;m2. Assume that main
bodies have spherical distribution of mass, bodym1 has an exterior
magnetic field, spacecraft has an infinitesimal mass, a triaxial
ellipsoid of inertia and electric current systems with permanent
magnets. The magnetization of spacecraft's cover and Foucault's
currents can be neglected. In addition, suppose that the exterior
magnetic field is simulated by oblique dipole, which creates the
constant magnetic torque P in coordinate system connected with
spacecraft, the axis of rotation motion of body m1 has a constant
orientation in inertial space, the dipole axis has a constant
declination δm with rotation axis of m1 and rotates together with
m1.

Suppose main bodies m1;m2ðm1Zm2Þ move along elliptical
orbit:

r¼ að1�e2Þ
1þe cos ν

;

where r is the distance between two main bodies, a; e;ν are the
semi-major axis, eccentricity and true anomaly accordingly, the
point O is the barycenter of m1;m2, and ~ω is the angular speed of

rotation motion of m1; then we introduce the following systems of
coordinates (Fig. 1).

Let OS1S2S3 be the inertial rectangular axes, taken along the
line of apsides of elliptic motion of main bodies, perpendicular to
this line and to the plane, containing two main bodies, at origin O.

Oxyz is a rotating barycentric frame such that Ox passes
through main bodies, Oy is perpendicular to Ox, Oz is parallel to
OS3. Its angular speed of the rotation is

_ν ¼ω0ð1þe cos νÞ2
ð1�e2Þ3=2

ð1Þ

Let MS2S2S3 be König's frame connected with barycenter M of
spacecraft such that MSj is parallel to OSj. Thus, König's frame
moves translationally.

Suppose Mz1z2z3 is the moving frame, taken along the principal
axes of inertia for spacecraft (A;B;C are principal moments of inertia
corresponding to axes Mz1;Mz2;Mz3 accordingly, AZBZC), MJ1J2J3
is the frame connected with angular momentum I2 such that MJ3 is
directed along I2;MJ2 is directed along the line of the intersection of
plane MS2S3 with the plane, which is perpendicular to I2, MJ3
supplements system to right.

Let My1y2y3 be additional König's frame such that My3 is
parallel to the rotation axis of body m1 and has a constant angular
i with MS3 (Fig. 2), Mx1x2x3 be the frame connected with body m1

and rotating with angular speed ~ω such that Mx3 is directed along
the axis of magnetic dipole.
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Let us determine the attitude of frame Oxyz in inertial space
OS1S2S3 by the angle ν (true anomaly). Suppose σ is the angle of
rotation around MS3, i is the angle of rotation around My2 (Fig. 2), λm
is the angle of rotation of Mx1x2x3 frame around My3 such that
0rσo2π;0r irπ; λm ¼ ~ωtþλ0 m; then we can transform
MS1S2S3 to My1y2y3 by means of two sequential rotations on σ
and i accordingly (Fig. 2). In the same way we can transformMy1y2y3
to Mx1x2x3 with the help of rotations by λm and δm respectively.

Let L; I2; I3; l;φ2;φ3 be Depri-Andoyer canonical variables [5,6],
which define the attitude of Mz1z2z3 w.r.t. König's axes MS1S2S3,
and

γij ¼ 〈y i; s j〉; Δij ¼ 〈x i; y j〉; βij ¼ 〈j i; s j〉; αij ¼ 〈z i; j j〉;

λ1j ¼ 〈x ; s j〉; λ2j ¼ 〈y ; s j〉; λ3j ¼ 〈z; s j〉; ð2Þ

be the elements of transition matrices between frames. Here
s i; y i; x i; j i; z i, x ; y ; z are the unit vectors of coordinate systems
described above.

Note that, using the classical notation L;G;H; l; g;h for variables
Depri-Andoyer, we get variables Serret-Andoyer [7].

It is clear that

γ11 ¼ cos i cos σ; γ12 ¼ cos i sin σ; γ13 ¼ � sin i;
γ21 ¼ � sin σ; γ22 ¼ cos σ; γ23 ¼ 0;

γ31 ¼ sin i cos σ; γ32 ¼ sin i sin σ; γ33 ¼ cos i ð3Þ
Using the change of variables

ði-δm; σ-λmÞ; i-δ1; σ-φ3�
π
2

� �
; ði-0; σ-νÞ;

we get similar formulas for Δij; βij; λij. Here δ1 is the angle
between MS3 and vector I2, cos δ1 ¼ I3=I2.

Taking into account (2), we get the following formulas for
direction cosines αi;j:

α11 ¼ � cos l sinφ2� sin l cos δ2 cos φ2; α12 ¼ cos l cos φ2

� sin l cos δ2 sin φ2;

α21 ¼ sin l sin φ2� cos l cos δ2 cos φ2; α22

¼ � sin l cos φ2� cos l cos δ2 sin φ2;

α31 ¼ sin δ2 cos φ2; α32 ¼ sin δ2 sin φ2; α33 ¼ cos δ2;
α13 ¼ sin l sin δ2; α23 ¼ cos l sin δ2

Here δ2 is the angle between Mz3 and vector I2; cos δ2 ¼ L=I2.
Hamilton function of problem is

H0 ¼ I2�L2

2
sin 2 l
A

þ cos 2 l
B

 !
þ L2

2C
þUgþUm

Here

Ug ¼ 3
2
ω2

0a
3 ∑

2

j ¼ 1

μj

r3j
½ðB�AÞγn2j2 þðC�AÞγn2j3 �

is a force function of gravitational torques [1], Um is a force function of
magnetic torques acting on spacecraft:

γnij ¼
1
ri
½ðβk1 cos νþβk2 sin νÞðx�xiÞþðβk2 cos ν�βk1 sin νÞyþβk3z�αjk

is the direction cosine between rj and Mzi-axis, f is an universal
gravitational constant, ω2

0 ¼ ½f ðm1þm2Þ=a3� is the mean motion of
main bodies, μ1 ¼ 1�μ, μ2 ¼ μ,

μ¼m2=ðm1þm2Þ; ri ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�xni Þ2þy2þz2

q
; xn1 ¼ �μ2r; xn2 ¼ μ1r

Here and below the summation is taken over lower indexes that
repeat twice.

Let us construct the force function Um. Suppose the magnetic
dipole rotates together with body m1, H is a magnetic field
strength creating by dipole; then from [9], it follows that

H¼ μm

r31
½3〈x3; er1 〉er1 �x3�

Here μm is the magnitude of dipole magnetic torque, x3 is the unit
vector directed along the dipole axis, er1 is the basis vector
directed along r1.

The force function of magnetic torques is

Um ¼ 〈P;H〉¼ μm

r31
½3〈x3; er1 〉〈P; er1 〉� 〈P; x3〉�; ð4Þ

where P is the constant magnetic torque which created by space-
craft's magnets.

Using (2), we get

P¼ Piαikβkls l; x3 ¼Δ3jγjksk; er 1 ¼ ξκsk ð5Þ

Here Pi is the constant projection of vector P on the Mzi-axis
ði¼ 1;2;3Þ,

ξk ¼
½ðxþμÞλ1kþyλ2k�

r1
; ξ3 ¼

z
r1
; k¼ 1;2

Substituting (5) in (4), we get

Um ¼ μm

r31
PiαikβklΔ3j½3ξlγjsξs�γjl�

Let us consider that Um and Ug are comparable on magnitude.
Note that the skew dipole model does not account the quadru-

pole part of the magnetic field, which can be significant for the
satellite close to the planet with mass m1 [10]. The influence of the
quadrupole components on the dynamics of a charged satellite is
investigated in [11,12].

Suppose the attitude motion of spacecraft have nothing influ-
ence over its orbital motion; then the orbit of spacecraft is
considered as a known quasi-periodic function of time in frame
Oxyz:

x¼ ∑
Jp J Z0

Cð1Þ
p exp i〈p;ω〉t; y¼ ∑

Jp J Z0
Cð2Þ
p exp i〈p;ω〉t;

Fig. 1. Main coordinate systems.

Fig. 2. Additional coordinate systems.
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