# Fast non-resonance rotations of spacecraft in restricted three body problem with magnetic torques 

Pavel Krasil'nikov<br>Department of Differential Equations, Moscow Aviation Institute, Volokolamskoe Shosse, 4, 125993 Moscow, Russia

## ARTICLE INFO

## Article history:

Received 6 March 2014
Received in revised form
11 August 2014
Accepted 3 November 2014
Available online 13 November 2014

## Keywords:

Three body problem
Magnetic torque
Spacecraft rotations
Angular momentum vector


#### Abstract

Fast non-resonance rotations of spacecraft around center of mass in restricted three body problem with magnetic torques are considered. It is supposed that one of primary bodies has a magnetic field, the spacecraft has magnets such that the magnetic torque is constant in the frame connected with spacecraft. In addition, it is supposed that spacecraft orbit is described by quasi-periodic functions of time, the angular speed of spacecraft rotations much more than the elliptical mean motion of primary bodies.

The averaged Hamiltonian of problem is obtained. For different parameters $D_{j}$ which are functionals on a set of spacecraft orbits, the evolution of angular momentum vector of spacecraft is investigated. It is shown that the increase of the magnetic torque leads to the magnification of the inclination for angular momentum vector. In limiting case when gravitational torques can be neglected, the angular momentum vector will be parallel to the plane of the rotation of primary bodies.

It is shown that there is a mathematical analogy between the purely magnetic rotations and gravitational rotations in plane orbits whenever bifurcation parameter $N$ is unit.


© 2014 Elsevier Ltd. All rights reserved.

## 1. Problem statement: Hamilton function

The investigation of spacecraft attitude motion in the central gravitational field with magnetic torques was given in [1-4]. Let us consider the non-resonance rotations of rigid spacecraft in the gravitational field of two main bodies $m_{1}, m_{2}$. Assume that main bodies have spherical distribution of mass, body $m_{1}$ has an exterior magnetic field, spacecraft has an infinitesimal mass, a triaxial ellipsoid of inertia and electric current systems with permanent magnets. The magnetization of spacecraft's cover and Foucault's currents can be neglected. In addition, suppose that the exterior magnetic field is simulated by oblique dipole, which creates the constant magnetic torque $\mathbf{P}$ in coordinate system connected with spacecraft, the axis of rotation motion of body $m_{1}$ has a constant orientation in inertial space, the dipole axis has a constant declination $\delta_{m}$ with rotation axis of $m_{1}$ and rotates together with $m_{1}$.

Suppose main bodies $m_{1}, m_{2}\left(m_{1} \geq m_{2}\right)$ move along elliptical orbit:
$r=\frac{a\left(1-e^{2}\right)}{1+e \cos \nu}$,
where $r$ is the distance between two main bodies, $a, e, \nu$ are the semi-major axis, eccentricity and true anomaly accordingly, the point $O$ is the barycenter of $m_{1}, m_{2}$, and $\tilde{\omega}$ is the angular speed of
rotation motion of $m_{1}$; then we introduce the following systems of coordinates (Fig. 1).

Let $O S_{1} S_{2} S_{3}$ be the inertial rectangular axes, taken along the line of apsides of elliptic motion of main bodies, perpendicular to this line and to the plane, containing two main bodies, at origin $O$.
$O x y z$ is a rotating barycentric frame such that $O x$ passes through main bodies, $O y$ is perpendicular to $O x, O z$ is parallel to $O S_{3}$. Its angular speed of the rotation is
$\dot{\nu}=\frac{\omega_{0}(1+e \cos \nu)^{2}}{\left(1-e^{2}\right)^{3 / 2}}$
Let $M S_{2} S_{2} S_{3}$ be König's frame connected with barycenter $M$ of spacecraft such that $M S_{j}$ is parallel to $O S_{j}$. Thus, König's frame moves translationally.

Suppose $M z_{1} z_{2} z_{3}$ is the moving frame, taken along the principal axes of inertia for spacecraft ( $A, B, C$ are principal moments of inertia corresponding to axes $M z_{1}, M z_{2}, M z_{3}$ accordingly, $A \geq B \geq C$ ), $M J_{1} J_{2} J_{3}$ is the frame connected with angular momentum $\mathbf{I}_{2}$ such that $M J_{3}$ is directed along $\mathbf{I}_{2}, M J_{2}$ is directed along the line of the intersection of plane $M S_{2} S_{3}$ with the plane, which is perpendicular to $\mathbf{I}_{2}, M J_{3}$ supplements system to right.

Let $M y_{1} y_{2} y_{3}$ be additional König's frame such that $M y_{3}$ is parallel to the rotation axis of body $m_{1}$ and has a constant angular $i$ with $M S_{3}$ (Fig. 2), $M x_{1} x_{2} x_{3}$ be the frame connected with body $m_{1}$ and rotating with angular speed $\tilde{\sigma}$ such that $M x_{3}$ is directed along the axis of magnetic dipole.


Fig. 1. Main coordinate systems.


Fig. 2. Additional coordinate systems.

Let us determine the attitude of frame $O x y z$ in inertial space $O S_{1} S_{2} S_{3}$ by the angle $\nu$ (true anomaly). Suppose $\sigma$ is the angle of rotation around $M S_{3}, i$ is the angle of rotation around $M y_{2}$ (Fig. 2), $\lambda_{m}$ is the angle of rotation of $M x_{1} x_{2} x_{3}$ frame around $M y_{3}$ such that $0 \leq \sigma<2 \pi, 0 \leq i \leq \pi, \lambda_{m}=\tilde{\omega} t+\lambda_{0 m}$; then we can transform $M S_{1} S_{2} S_{3}$ to $M y_{1} y_{2} y_{3}$ by means of two sequential rotations on $\sigma$ and $i$ accordingly (Fig. 2). In the same way we can transform $M y_{1} y_{2} y_{3}$ to $M x_{1} x_{2} x_{3}$ with the help of rotations by $\lambda_{m}$ and $\delta_{m}$ respectively.

Let $L, I_{2}, I_{3}, l, \varphi_{2}, \varphi_{3}$ be Depri-Andoyer canonical variables $[5,6]$, which define the attitude of $M z_{1} z_{2} z_{3}$ w.r.t. König's axes $M S_{1} S_{2} S_{3}$, and
$\gamma_{i j}=\left\langle\overline{\mathbf{y}}_{i}, \overline{\mathbf{s}}_{j}\right\rangle, \Delta_{i j}=\left\langle\overline{\mathbf{x}}_{i}, \overline{\mathbf{y}}_{j}\right\rangle, \beta_{i j}=\left\langle\overline{\mathbf{j}}_{i}, \overline{\mathbf{s}}_{j}\right\rangle, \alpha_{i j}=\left\langle\overline{\mathbf{z}}_{i}, \overline{\mathbf{j}}_{j}\right\rangle$,
$\lambda_{1 j}=\left\langle\overline{\mathbf{X}}, \overline{\mathbf{s}}_{j}\right\rangle, \lambda_{2 j}=\left\langle\overline{\mathbf{y}}, \overline{\mathbf{s}}_{j}\right\rangle, \lambda_{3 j}=\left\langle\overline{\mathbf{z}}, \overline{\mathbf{s}}_{j}\right\rangle$,
be the elements of transition matrices between frames. Here $\overline{\mathbf{s}}_{i}, \overline{\mathbf{y}}_{i}, \overline{\mathbf{x}}_{i}, \overline{\mathbf{j}}_{i}, \overline{\mathbf{z}}_{i}, \overline{\mathbf{x}}, \overline{\mathbf{y}}, \overline{\mathbf{z}}$ are the unit vectors of coordinate systems described above.

Note that, using the classical notation $L, G, H, l, g, h$ for variables Depri-Andoyer, we get variables Serret-Andoyer [7].

It is clear that
$\gamma_{11}=\cos i \cos \sigma, \gamma_{12}=\cos i \sin \sigma, \gamma_{13}=-\sin i$,
$\gamma_{21}=-\sin \sigma, \gamma_{22}=\cos \sigma, \gamma_{23}=0$,
$\gamma_{31}=\sin i \cos \sigma, \gamma_{32}=\sin i \sin \sigma, \gamma_{33}=\cos i$
Using the change of variables
$\left(i \rightarrow \delta_{m}, \sigma \rightarrow \lambda_{m}\right), \quad\left(i \rightarrow \delta_{1}, \sigma \rightarrow \varphi_{3}-\frac{\pi}{2}\right), \quad(i \rightarrow 0, \sigma \rightarrow \nu)$,
we get similar formulas for $\Delta_{i j}, \beta_{i j}, \lambda_{i j}$. Here $\delta_{1}$ is the angle between $M S_{3}$ and vector $\mathbf{I}_{2}, \cos \delta_{1}=I_{3} / I_{2}$.

Taking into account (2), we get the following formulas for direction cosines $\alpha_{i, j}$ :
$\alpha_{11}=-\cos l \sin \varphi_{2}-\sin l \cos \delta_{2} \cos \varphi_{2}, \alpha_{12}=\cos l \cos \varphi_{2}$
$-\sin l \cos \delta_{2} \sin \varphi_{2}$,
$\alpha_{21}=\sin l \sin \varphi_{2}-\cos l \cos \delta_{2} \cos \varphi_{2}, \alpha_{22}$ $=-\sin l \cos \varphi_{2}-\cos l \cos \delta_{2} \sin \varphi_{2}$,
$\alpha_{31}=\sin \delta_{2} \cos \varphi_{2}, \alpha_{32}=\sin \delta_{2} \sin \varphi_{2}, \alpha_{33}=\cos \delta_{2}$,
$\alpha_{13}=\sin l \sin \delta_{2}, \alpha_{23}=\cos l \sin \delta_{2}$

Here $\delta_{2}$ is the angle between $M z_{3}$ and vector $\mathbf{I}_{2}, \cos \delta_{2}=L / I_{2}$. Hamilton function of problem is
$H^{\prime}=\frac{I^{2}-L^{2}}{2}\left(\frac{\sin ^{2} l}{A}+\frac{\cos ^{2} l}{B}\right)+\frac{L^{2}}{2 C}+U_{g}+U_{m}$
Here
$U_{g}=\frac{3}{2} \omega_{0}^{2} a^{3} \sum_{j=1}^{2} \frac{\mu_{j}}{r_{j}^{3}}\left[(B-A) \gamma_{j 2}^{* 2}+(C-A) \gamma_{j 3}^{* 2}\right]$
is a force function of gravitational torques [1], $U_{m}$ is a force function of magnetic torques acting on spacecraft:
$\gamma_{i j}^{*}=\frac{1}{r_{i}}\left[\left(\beta_{k 1} \cos \nu+\beta_{k 2} \sin \nu\right)\left(x-x_{i}\right)+\left(\beta_{k 2} \cos \nu-\beta_{k 1} \sin \nu\right) y+\beta_{k 3} z\right] \alpha_{j k}$
is the direction cosine between $\mathbf{r}_{j}$ and $M z_{i}$-axis, $f$ is an universal gravitational constant, $\omega_{0}^{2}=\left[f\left(m_{1}+m_{2}\right) / a^{3}\right]$ is the mean motion of main bodies, $\mu_{1}=1-\mu, \mu_{2}=\mu$,
$\mu=m_{2} /\left(m_{1}+m_{2}\right), r_{i}=\sqrt{\left(x-x_{i}^{*}\right)^{2}+y^{2}+z^{2}}, x_{1}^{*}=-\mu_{2} r, x_{2}^{*}=\mu_{1} r$
Here and below the summation is taken over lower indexes that repeat twice.

Let us construct the force function $U_{m}$. Suppose the magnetic dipole rotates together with body $m_{1}, \mathbf{H}$ is a magnetic field strength creating by dipole; then from [9], it follows that
$\mathbf{H}=\frac{\mu_{m}}{r_{1}^{3}}\left[3\left\langle\overline{\mathbf{x}}_{3}, \overline{\mathbf{e}}_{r_{1}}\right\rangle \overline{\mathbf{e}}_{r_{1}}-\overline{\mathbf{x}}_{3}\right]$
Here $\mu_{m}$ is the magnitude of dipole magnetic torque, $\overline{\mathbf{x}}_{3}$ is the unit vector directed along the dipole axis, $\overline{\mathbf{e}}_{r_{1}}$ is the basis vector directed along $\mathbf{r}_{1}$.

The force function of magnetic torques is
$U_{m}=\langle\mathbf{P}, \mathbf{H}\rangle=\frac{\mu_{m}}{r_{1}^{3}}\left[3\left\langle\overline{\mathbf{x}}_{3}, \overline{\mathbf{e}}_{r_{1}}\right\rangle\left\langle\mathbf{P}, \overline{\mathbf{e}}_{r_{1}}\right\rangle-\left\langle\mathbf{P}, \overline{\mathbf{x}}_{3}\right\rangle\right]$,
where $\mathbf{P}$ is the constant magnetic torque which created by spacecraft's magnets.

Using (2), we get
$\mathbf{P}=P_{i} \alpha_{i k} \beta_{k l} \overline{\mathbf{s}}_{l}, \quad \overline{\mathbf{x}}_{3}=\Delta_{3 j} \gamma_{j k} \overline{\mathbf{s}}_{k}, \quad \overline{\mathbf{e}}_{r_{1}}=\xi_{K} \overline{\mathbf{s}}_{k}$
Here $P_{i}$ is the constant projection of vector $\mathbf{P}$ on the $M z_{i}$-axis ( $i=1,2,3$ ),
$\xi_{k}=\frac{\left[(x+\mu) \lambda_{1 k}+y \lambda_{2 k}\right]}{r_{1}}, \quad \xi_{3}=\frac{z}{r_{1}}, \quad k=1,2$
Substituting (5) in (4), we get
$U_{m}=\frac{\mu_{m}}{r_{1}^{3}} P_{i} \alpha_{i k} \beta_{k l} \Delta_{3 j}\left[3 \xi_{l} \gamma_{j s} \xi_{s}-\gamma_{j l}\right]$
Let us consider that $U_{m}$ and $U_{g}$ are comparable on magnitude.
Note that the skew dipole model does not account the quadrupole part of the magnetic field, which can be significant for the satellite close to the planet with mass $m_{1}[10]$. The influence of the quadrupole components on the dynamics of a charged satellite is investigated in $[11,12]$.

Suppose the attitude motion of spacecraft have nothing influence over its orbital motion; then the orbit of spacecraft is considered as a known quasi-periodic function of time in frame Oxyz:
$x=\sum_{\|p\| \geq 0} C_{p}^{(1)} \exp i\langle\boldsymbol{p}, \boldsymbol{\omega}\rangle t, \quad y=\sum_{\|p\| \geq 0} C_{p}^{(2)} \exp i\langle\boldsymbol{p}, \boldsymbol{\omega}\rangle t$,

# https://daneshyari.com/en/article/783556 

Download Persian Version:

## https://daneshyari.com/article/783556

## Daneshyari.com

