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Stability of triangular libration points in a planar restricted elliptic three-body problem is investigated
for two sets of parameters corresponding to the cases of double resonances. These positions are shown
to be formally stable in the case of the fourth-order double resonance. When a weak third-order and a
strong fourth-order resonances occur in the system, any motion of an approximate autonomous system
is found to be bounded if initial conditions are sufficiently close to the unperturbed motion.
Boundedness domain estimate is obtained.
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1. Introduction

Stability investigation of the triangular libration points in a three-
body problem is a classical problem of celestial mechanics. These
constant positions were discovered by G.-L. Lagrange [1] for the
Newtonian gravitational field and by P.-S. Laplace [2] for an arbitrary
power law of attraction. Later necessary conditions for stability of the
triangular libration points were obtained for the circular restricted
three-body problem [3], the unrestricted three-body problem [4,5],
and an arbitrary law of attraction [4-6]. In the paper [5] conditions
for stability (in the first approximation) were also found for the
elliptic problem. Non-linear stability analysis for the case of the
circular problem is carried out in the papers [7,8]. Detailed non-linear
stability analysis for the triangular libration points in the restricted
circular and elliptic three-body problem for planar and spatial cases
is given in the monograph [9]; here one can find bibliography on the
subject. Stability of the triangular libration points in the case of
critical mass ratio is investigated in the paper [10]. For the unrest-
ricted three-body problem, a non-linear stability analysis of Lagran-
gian and Laplacian solutions is carried out in the papers [11-13].

2. Problem statement

Suppose two massive bodies S and J move in a field of a mutual
gravitational attraction around their center of mass in elliptic
orbits. The third body P of much less mass moves in the orbital
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plane of S and J affected by their attraction. Thus we consider a
planar elliptic restricted three-body problem. The Hamiltonian
function of the problem has a form [9]
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Here &,n and p;,p, denote Nehvil's variables and correspond-
ing momenta, e and v eccentricity and true anomaly, and m; and
m, (m; > my) masses of the bodies S and J.

The system with Hamiltonian (1) has a particular solution
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This solution corresponds to one of two constant configurations

called the triangular libration point when the bodies lie (in the

rotating coordinate system) at vertices of an equilateral triangle.
Introduce perturbations of quantities (2) by formulas
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The Hamiltonian of the perturbed motion has the form [9]
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where k =3+/3(1—2p)/4. The dots denote the set of terms of the
fifth and higher orders in g;,p; j=1,2).

Fig. 1 shows a domain (in the g, e plane) of stability in the linear
approximation of solution (2) [9]. In this domain the characteristic
exponents +il; (j=1, 2) of a linearized system of equations of the
perturbed motion are purely imaginary. The lower boundary e=0
corresponds to the case of a circular problem, for which
O<p<y*= Q_T V69 _ 0.0385208.
The upper and right boundaries of the domain are defined by the
equations 24, = —1 and A; +1, = 0 respectively.

There are seven resonance curves of the third and fourth orders
defined by the equations
(D) 341 +4=2,

2) 3/’{1 7/12 =3, 3 2/1] +12 =1,

(4) /1] +3/12 =-1, (5 /11 —2).2 =2, (6) 41.] =3, (7) 322 = -2
Here the number of the equation coincides with the number of the
corresponding curve in Fig. 1.

On curves 3 and 7 of strong third-order resonances (indicated by
dotted lines in Fig. 1) the solution in question is unstable. On curves 1,
4 and 6 of strong fourth-order resonances the intervals of stability in
the fourth approximation are indicated by solid lines, whereas the
instability parts by dotted lines. On curves 2 and 5 of weak resonances
of the third and fourth orders respectively (dash-dot lines) the
solution is formally stable when there are no other resonances.

The domain contains two points of double resonance. At the point
A (e1=0.165115, p¢; = 0.0393625) the double fourth-order resonance
occurs for which A +34, = —1, 41, = 3. This point belongs to the
interval of stability in the fourth approximation of both the resonance
curves. The point B (e,=0.1218928, i, = 0.03871614) is the intersec-
tion point of the weak third-order resonance curve 1; —24, =2 and
the fourth-order resonance curve 41; =3 for which the solution
considered is stable in the fourth approximation.

We will show that the triangle vibration point is formally stable
at the point A. We will also show that all motions of an
approximate autonomous system corresponding to the point B
are bounded if they begin in a sufficiently small neighb-
orhood of the libration point. Boundedness domain estimate will
be obtained.
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Fig. 1. Domain of linear stability and resonance curves.

3. Double fourth-order resonance investigation

We put in Hamiltonian (4) e=e;, y=p,, k=k and make a
canonical transformation g;,p;—q;,p;/ (j=1, 2) reducing it to a
normal form in terms up to the fourth order inclusive in the
perturbations in accordance with the available resonances. Normal-
ization procedure is accomplished by means of the symbolic compu-
tation system Maple. It is not presented here due to the inco-
nvenience. In the “polar” coordinates @1 (g = \/271 sin )
pj = /21 cos @;) the normalized Hamiltonian has the form

H = A1+ Aarp 4 Coor? +C1111 T2 + Coal3 +ar? cos (4, — 3t +4¢7)
+Pr1%15/ cos (1 +39) + t+ (@} +3¢93)]+ 05, 5)
where A, =3/4, 1, = —7/12. The calculations show that
Cy0 =58.717491, 11 =45.544761, cgy = 141.644459;
a=38.835299, f—162.754565, ¢f=1.171487, @%= —1.811563.
(6)

We make the univalent canonical change of variables ®js rj— &,
R; (j=1,2) in (5) with the generating function

S= (@1 + @7 = OR1 + (@2 + @5 — A2 DR, @
It is defined by the formulas
Ri=r, Pi=¢j+¢i-At (=12). (8)

As a result the linear in rj terms in the Hamiltonian vanish, time ¢
disappears from the resonance terms, and the Hamiltonian has a form

Hi = (C20+@cos 4D1)R +¢11R Ry + ConRE + BR}PRY/? cos (D1 +3D2)+0s5.  (9)

First we consider the approximate Hamiltonian H,o truncating the
last term on the right-hand side of equality (9). It can be written in
the form

Hio=R3f1(w), f1(w) = (cao+anyu*+ciyu? +fnyu+cop. (10)
Here we introduce the notations

Ri/Ry=u? nj=cosdd;, ny= cos(P;+3P;) (Imjl<1, j=1,2).

Taking into consideration of numerical values (6), we can easily
show that the fourth-order polynomial f;(u) takes strictly positive
values for any u > 0. Indeed, the leading coefficient of the function
fi and the second derivative f;” = 12(cyo+an;)u®>+2c;; are posi-
tive. Therefore, the first derivative f" = 4(ca0 +any)u + 2cy1u+fn,
is a monotonous function with a unique root. In the case n, > 0 this
root is negative. Hence, for any u >0 we have f;">0, ie. the
function f; is monotone increasing and f;(u) > f1(0) = cg > 0.

In the case n, < 0 the root of the function f’ is positive, and the
graph of the function f; is a parabola which can intersect the
abscissa axis at two points or can lie above this axis. In the
boundary case of a double root when the abscissa axis is tangent to
the parabola at the point of minimum two conditions f; =f;" =0
satisfy simultaneously. In this case the resultant

Rs = —(co0+an;)’g,
g =27p*(c20+ani)ng — 4B c11[36co2 (a0 +any) — 241
—16¢02[4C02(C20 +any)? — 4 12 (11)
of the functions f; and f;" vanishes.
Notice that the quadratic in n3 trinomial in (11) always has two

real roots of opposite signs. The positive one, however, is greater
than 1, since the inequality

8liny = 1= —256¢3,0%n2 +a[9p” (3> — 16¢11Co2)
+128¢2,(c3; —4ca0C0)IM
+27¢20" +4c11(c3 — 36C20C02)3
—16¢02(c}; —4c20C02)* <0

is satisfied for |n{| <1 and values (6) under consideration.
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