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We study the pitch motion dynamics of a rigid body in a resistant medium under the influence of a
biharmonic torque a sin 6+b sin 26. Such nutation angle dependence of the biharmonic aerodynamic
torque is typical for uncontrolled re-entry vehicles of segmentally conical, blunted conical, and other
shapes (Soyuz, Mars, Apollo, Viking, Galileo Probe, Dragon). The presence of the second harmonic in the
biharmonic torque is the cause of additional unstable equilibrium. In case of spatial motion a small
perturbation is a small difference of the transverse inertia moments of the body. In this case, two Euler
angles dand y are the positional coordinates, and we can observe a chaos. In case of the planar motion
the body is perturbed by a small aerodynamic damping torque and a small periodic torque of time. We
show by means of the Melnikov method that the system exhibits a transient chaotic behavior. This
method gives us an analytical criterion for heteroclinic chaos in the planar motion and an integral
criterion for the spatial motion. The results of the study can be useful for studying the chaotic behavior of
a spacecraft in the atmosphere.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The dynamics of rotating bodies is a classic topic of study in
mechanics. In the eighteenth and nineteenth centuries, several
aspects of the motion of a rotating rigid body were studied by such
famous mathematicians as Euler, Cauchy, Jacobi, Poinsot, Lagrange,
and Kovalevskaya. In some cases, for the study of dynamical
systems it can be useful to use elements of mathematical phe-
nomenology and phenomenological approximate mappings for
obtaining approximate differential equations and approximate
solutions in local area around singular points, linear and non-
linear approximations [1-2]. However, the study of the dynamics
of rotating bodies is still very important for numerous applications
such as the dynamics of satellite gyrostat, spacecraft, re-entry
vehicle, and the like. Note that only some of the papers are
devoted to the modern problem of rigid body dynamics. So in an
independent way, Sadov [3] first obtained sets of action-angle
variables for the rotational motion of a triaxial rigid body. Deprit
and Elipe [4] used Sadov's variables to convert directly the Serret-
Andoyer variables [5-7] into action-angle variables, thereby mak-
ing Hamiltonian dependent on only two momenta. Akulenko et al.
[8] considered perturbed motion about a fixed point of a dynami-
cally symmetrical heavy solid in a medium with linear dissipation
and obtained an averaged system of equations. Yaroshevskii
created fundamentals of the dynamics of re-entry vehicles, which
were used for designing the Soviet spacecraft such as Vostok, Souz,
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Luna, Venera and Mars. Yaroshevskii wrote two books in Russian
and a large number of articles on this problem the latter of which
[9-12]. Aslanov [13] studied the motion of a rotating rigid body in
the atmosphere of a planet under the action of a restoring torque
which depends on time and the angle of nutation. The rigid body
(re-entry vehicle) intended to descend into the atmosphere
usually has a small aerodynamic and dynamic asymmetry, for
example, it has a small relative difference between the transverse
moments of inertia [14]. In this case, the angular motion depends
on two Euler angles: the nutation angle ¢ (spatial angle of attack)
and the angle of spin . If the frequency of change of these angles
becomes multiple to the relation of simple integers, then a
parametrical resonance occurs [14]. Holmes and Marsden applied
the methods of chaotic dynamics [15] for solving a similar
problem. Holmes and Marsden considered the problem of spatial
motion of the heavy rigid body with a small dynamic asymmetry
when the torque of gravity was proportional to m, ~ sin 6. Similar
tasks have also been discussed in the papers [16-19].

This paper focuses on the study of the motion of a blunt rigid
body in an atmosphere which is under the action of a biharmonic
aerodynamic torque a sin #+b sin 26. The purpose of the paper is
the finding of the conditions of existence of chaos in motion in the
slightly asymmetrical rigid body in the atmosphere under the
action of small perturbations and determining the influence of
chaos on the behavior of the rigid body.

The paper is divided into five sections. In Section 2 the
statement of the problem is given. In Section 3 the spatial motion
of the slightly asymmetrical rigid body about its center of mass in
an atmosphere is considered. An aerodynamic torque on the body
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is determined by the biharmonic dependence on the angle of
nutation. Hamilton's canonical equations are derived and condi-
tions are found for the existence of unstable equilibria of the
system. Homoclinic orbits are determined in an analytical form
and Melnikov function is constructed in the modification of
Holmes and Marsden [15]. Numerical simulation of a chaotic
behavior of the system completes the section. In Section 4 we
find an exact analytical representation of the Melnikov function
for the planar motion, if the small disturbance is determined as the
sum of a periodic time function and a dissipative torque. The
analytical results given by the Melnikov method have been
confirmed by a good agreement with direct numerical calculations
in the construction of Poincaré sections by using the fourth-order
Runge-Kutta algorithms. In Section 5, it is concluded that the
biharmonic system will exhibit a lot of chaotic motions due to the
combined physical parameters with external torques that are
dissipative and periodic or due to the small dynamic asymmetry.

2. Problem formulation

Let's determine a place of the considered problem in the general
problem of rigid body dynamics and also note an analogy to the
motion of a heavy rigid body and the rigid body in the resisting
medium (atmosphere of a planet). Gravity and aerodynamic torques
acting on the sphere with a displaced center of mass in the resisting
medium are proportional to sin ¢ (Fig. 1a and b). The shape of the
Soviet spacecraft Vostok was a sphere. On board Vostok, Soviet
cosmonaut Yuri Gagarin made history on April 12, 1961, when he
became both the first person in the world to enter space and to
return to Earth. However, the modern re-entry vehicles have a
blunted conical shape (Apollo, Galileo Probe, Dragon), it is to
provide efficient braking in the atmosphere. For these re-entry
vehicles (Fig. 1¢) the aerodynamic torque is well approximated by
biharmonic dependence on the nutation angle

my=a’sin 0+b’sin 20 (1)

However, the dependences on the angle of nutation (1) can have
three positions of equilibrium, and one of them is unstable. The
stable position at the points 0, =0 and 6, = z; and unstable in the
third intermediate point 6, € (0, z) [13,20,21]. The presence of the
second harmonic in (1) causes the possibility of appearance of an
additional equilibrium position - saddle point on a phase portrait.
For the considered spacecraft position # =0 is stable; therefore, a
derivative of the function my (0) with respect to the angle ¢ at this
point is negative

% = (a' cos 6+2b cos 20)|,_,<0 )
0=0

or

2b < —da 3)

And if there exists an intermediate position of equilibrium
inside the interval of (0, z), then

my(0) = sin 6(a’+2b" cos 6) =0 4)
which holds true, if
[2b'| > || (5)

It is obvious that (3) and (4) are valid simultaneously when
b'< 0. Note that the dependence of my(0) given in Fig. 1 satisfies
conditions (3) and (4). The stable position occurs not only in the
point of # =0, but also in the point of # =z when (3) is fulfilled
for the re-entry vehicle. The motion of the spacecraft in a
neighborhood of 0= cannot be allowed, because in this case
the back part of the body will move towards an approach flow. A

simultaneous existence of the unstable equilibrium positions and
small perturbations can lead to chaos.

The role of small perturbations may play, for instance, a small
dynamic asymmetry of the body or a small external torque. The
rigid body with a triaxial ellipsoid of inertia possesses a small
dynamic asymmetry, if its transverse inertia moments differ little
from each other. Then the small dynamic asymmetry is written as

e=(b-1)/h (6)

where ¢ is a small parameter.
Small disturbance torque is represented as the sum of the
periodic term and dissipative term

My = (v cos wt—80)I; (7

where v and § > 0 are small parameters, wand t are frequency and
time, respectively.

Below we consider successively two separate problems of
perturbed motion: the problem of a spatial motion of the body
with a small asymmetry (6) and the problem of a planar motion of
the body under the external torque (7).

3. The spatial motion of the asymmetrical body
3.1. Hamiltonian equations
Consider the spatial motion of the rigid body about its center of

mass in an atmosphere. To suppose that the biharmonic torque
acts on the rigid body

my =aly sin @+bl; sin 20 8)
where
a:a’/h, b=b//11 (9)

Kinetic energy and potential energy of the spacecraft in this
case become

j(lm +Lq* +15r%)

—_

—[11 ¢ sin 0 sin y+0 cos y/)

I\J

+L(¢ sin 6 cos y—0 sin y/) +I5(¢ cos 9+1j/)2]
- /M0d0=a11 cos 6+ bl cos26

where (p,q,r) are rotation components in the body frame and
(¢,w,0) are Euler angles. Then the Hamiltonian is

[(ps—D, cos 0)sin y+p, sin 0 cos y/}z
21, sin’6

N [(p,—D, cos 0)cos y—p, sin ¢ sin y/}z

2I, sin%0

H=T+II =

2
+§%+ah cos 6+ bl cos?6. (10)
3
where (p;=0T/dp, p,=0T/dy, p,=0T/d0) are the general-
ized momentums and (6, y, ¢) are the generalized coordinates.
The Hamiltonian (10) can be written as

H=HO+¢H'+0(%) (1
where
2 (p,—p, cos 9)2 p2
go—Po [ Wo=By T2 7 | D | a1 cos 6+ bl cos?6 12
2L 21, sin26 2; ! 12

[(py—p, cos 6)cos y—p, sin 6 sin y/}z

H'=—
214 sin2¢

13)
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