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a b s t r a c t

This article is concerned with overall or macroscopic properties of a composite material with no
distinction made between the fibres and the matrix which they are embedded in. All the properties with
dimensions larger than the fibre diameter and spacing are regarded as averaged over a volume of
material. The systems of particular interest here are in the fibre reinforced composites with the fibres
being very much stiffer and stronger than the matrix.

Laminated plates of fibre-reinforced material are often fabricated from prepreg tapes, laid up
according to some specific arrangement of fibre orientation and then bonded together. An angle-ply
laminate is formed by alternating plies so that the families in adjacent laminas are inclined by angle ϕ
and �ϕ to given direction alternately. The process of fabricating a multilayered plate of this material
gives rise to a laminate in which the plies are separated by resin rich layer, and when this layer is thin
enough that its thickness is negligible it may be regarded as plate reinforced by two families of fibres.
Problems shall be considered in three dimensions, but attention shall be restricted to linear elasticity
theory. The plate under consideration is reinforced by two mechanically equivalent families of fibres, but
with no other preferred directions, so that it is locally orthotropic with respect to the plane of the fibres
and to the two planes that orthogonally bisect the fibres.

In this article linear elastic stress–strain relation is employed to derive dispersion curves for plane
harmonic waves propagating in a plate of finite thickness but of infinite lateral extent. Attention is
restricted to waves propagating in the plane parallel to stress free plate faces where waves travelling at
any angle to one of the families of very strong fibres are examined. The dispersion equations, relating the
phase velocity to the wavelength, are obtained. The fundamental modes are examined for symmetric as
well as for anti-symmetric deformations. This leads to full understanding of displacement field as well as
stress field.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years there has been considerable activity in the study
of the mechanical behaviour of composite materials and possibilities
of their applications. For example, aluminium alloys are used in
advanced applications because their combination of high strength,
low density, durability, machinability and cost are very attractive.
However, using aluminium matrix composite materials may consid-
erably extend the scope of these properties. One may come to
similar conclusion by considering polymer matrix composites.

Here we are concerned with fibre-reinforced composite mate-
rials that have an important property that they are anisotropic,
and in many cases this anisotropy may be very strong, in the sense
that mechanical properties are strongly dependent on direction.
They usually consist of one or more filamentary phases embedded
in a continuous matrix phase. Such materials are highly resistant
to deformation by extension in the fibre direction compared to
other deformation modes. The use of fibre reinforced composites is
prevalent in modern structures, especially those for which a high
strength to weight ratio is of primary concern.

Generally, composite material must be man-made as a combi-
nation of at least two chemically distinct materials with a distinct
interface separating constituents. It should create properties,
which could not be obtained by any of the constituents on its own.

The continuous fibre reinforced composites have as their main
features improvement of stiffness and strength, reduction of wear
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and creep, anisotropic properties, improved strength in fibre
direction, high price and complex manufacturing techniques.

The discontinuously reinforced composites are developed, when
strength is not the main objective, but when a better wear resistance,
a controlled thermal expansion, and a higher service temperature are
expected.

The mechanical behaviour of unidirectional reinforced compo-
sites is relatively well understood. The tensile behaviour of the
composite can be predicted from the behaviour of individual cons-
tituents by simple rules of mixture and simple structural mec-
hanics to describe off-axis behaviour.

Fibre reinforced materials are materials with preferred directions
and their macroscopic behaviour has been described as a continuum
model by Spencer [1]. For materials with very strong fibres mathe-
matic description is considerably simplified by assumption that fibres
are inextensible. Detailed analysis of deformation fields for such
materials is given by Spencer [2]. Dynamic behaviour of plate
reinforced by one family of fibres is described by Green [3], and
Green and Milosavljević [4], Bending waves of plate reinforced by two
families of fibres and surface waves are described in Refs. [5,6] by
Milosavljević, respectively. Dispersion relations in long wave limit in
plate reinforced by two families of extensible fibres are derived in [7],
and in plate reinforced by two families of inextensible fibres are
derived in [8] by Milosavljević. Rheological model of circular cylind-
rical sandwich plate system has been considered by Hedrih and
Simonovic [9], which is analogous to considering laminate structures,
which will be extension of present study of one highly aniso-
tropic layer.

In this paper we consider wave propagation in plate reinforced
by two families of inextensible fibres in an arbitrary direction,
parallel with the stress free boundaries. Dispersion relations for
both symmetric and anti-symmetric fundamental modes are
obtained. Particular attention is given to waves propagating
perpendicular to one of the family of fibres.

2. Materials reinforced by strong fibres

Formulation of tangent modules in direct notation enables
description independently of coordinate system and discussion
of their properties in spatial as well as in material descriptions.

General definition of tangent modulus is based on existence of
strain energy function of an elastic solid. To a large extent notation
used by Spencer [1] is followed. All quantities are referred to a
fixed Cartesian coordinate system, and all vector and tensor
components are components in this system.

Suppose that a body of an elastic material undergoes a
deformation in which a typical particle which in reference config-
uration initially has position vector X, with components
XR; ðR¼ 1;2;3Þ, at subsequent time t moves to the point with
position vector x with components xi; ði¼ 1;2;3Þ. Then the defor-
mation is described by equations of the following form:

x¼ xðX; tÞ or xi ¼ xiðXR; tÞ; ð2:1Þ

and for fixed time t, the three functions define deformation from
the configuration X, to x. The particle displacement u from the
reference configuration to the present one is defined by the
following equation:

u¼ x�X; or uk ¼ xk�δkRXR: ð2:2Þ

The local properties of the deformation are characterised by the
nine deformation gradients of tensor F which has components
FiR ¼ ∂xi=∂XR, and right Cauchy–Green tensor C has the following

form:

C¼ FT UF¼ Iþ2E; CRS ¼ FiRFiS ¼
∂xi
∂XR

U
∂xi
∂XS

¼ δRSþ2ERS; ð2:3Þ

in which ERS represents components of Green Lagrange strain ten-
sor E, given as follows:

ERS ¼ 1
2 δiR

∂ui

∂XS
þδiS

∂ui

∂XR
þ ∂ui

∂XR

∂ui

∂XS

� �
: ð2:4Þ

Left Cauchy–Green strain tensor B (Finger tensor), is defined as
follows:

B¼ FUFT ; Bij ¼ FiRFjR ¼
∂xi
∂XR

U
∂xj
∂XR

: ð2:5Þ

If δV and δv are the volumes of material volume element in
reference and deformed configuration, respectively, ρ0 and ρ
densities of the element in these configuration, then it follows
δv=δV ¼ ρ0=ρ¼ detF.

The strain energy function (per unit volume of the un-de-
formed body), in the case of isotropy, has following form:

ψ ¼ψ ðCÞ; ð2:6Þ
and, therefore, tangent modulus may be constructed to satisfy the
corresponding constitutive rate equations. Accordingly, if there
exists the strain energy function, the second Piola–Kirchhoff's
stress tensor S and elastic stiffness tensor in material description
may be written, respectively,

S¼ 2
∂ψ
∂C

¼ ∂ψ
∂E

; C ¼ 4
∂2ψ
∂C∂C

¼ ∂2ψ
∂E∂E

; ð2:7Þ

and Kirchhoff's stress tensor τ¼ FSFT and elastic stiffness tensor in
spatial description

τ¼ 2F
∂ψ
∂C

FT ; c¼ ðF � FTÞ : ∂
2ψ

∂C∂C
: ðFT � FÞ; ð2:8Þ

where elastic modulus in spatial description c is related to elastic
modulus in material description C as follows:

cabcd ¼ FaAF
b
BF

c
CF

d
DC

ABCD: ð2:9Þ

2.1. Material reinforced by one family of fibres

If we consider the material as transversely isotropic relative to
undistorted state in fact we consider materials in which in the
reference configuration possess a single preferred direction at each
particle, although this need not be the same direction for every
particle. Thus, constitutive equations are invariant under rotations
about the preferred direction. For convenience of description, we
employ terminology, as given by Spencer [1], which is appropriate
for a material which is reinforced by a single family of continu-
ously distributed fibres, although the theory is applicable to any
material with a single preferred direction.

The fibre direction is defined by a unit vector field in the
reference configuration which is denoted by a0 and is a function of
the reference position X, whose trajectories are termed fibres. In a
deformation the fibres are conveying with the material, so that in a
deformed configuration the fibre direction is defined by a unit
vector field a, where the stretch in fibre direction λa and its
quadratic may be calculated as follows:

λaa¼ Fa0; and λ2a ¼ a0Ca0: ð2:10Þ
For transversely isotropic material the strain energy function is

invariant under arbitrary rotation of the reference configuration
about the direction a0. It can be shown that that transversal
isotropy requires strain energy function to be an isotropic invar-
iant of C and a0, or alternatively a. Taking into account that the
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