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a b s t r a c t

In recent years, people were puzzled about two reverse nonlocal models in studying transverse bending
of nanobeams. Following the ideologies of both nonlocal models, two kinds of torsional models were
constructed to investigate the nonlocal torsional vibration of carbon nanotubes, respectively. Just like the
transverse bending of nanobeams, it is strange to observe two opposite size-dependent performances.
The first nonlocal continuum model (weakened model) was based on equilibrium equations and
nonlocal torsional shear stress relation. Natural frequency decreases with an increase in nonlocal
nanoscale parameter, or it increases with increasing length of the carbon nanotube. Thus the torsional
stiffness of carbon nanotubes is weakened. On the other hand, the second nonlocal model (enhanced
model) was developed from the strain energy variational principle. Natural frequency increases (or
decreases) with increasing nonlocal nanoscale parameter (or length of the carbon nanotube), or the
nanostructural stiffness is strengthened. For judgment, a torsional semi-continuum model with discrete
atomic layers in the cross section of a carbon nanotube was proposed. The relaxation effects on surface
atoms were considered in the torsional semi-continuum model. It is concluded that the relaxation type
(attractive or repulsive) of surface atoms results in two different nonlocal results. Consequently, both the
existing reverse models are proved to be valid.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Since the carbon nanotube was discovered by Iijima [1] in the
year 1991, such nanostructure has attracted intensive attention,
including studies of buckling, post-buckling, bending, wave pro-
pagation, transverse vibration and so on [2–5]. Due to some
technical difficulties in experiments at such tiny scale, two main
approaches available including atomic simulation and continuum
modeling are applied to the analyses of carbon nanotubes cur-
rently. However, as the atomic modeling considers each individual
atom and its multiple mechanical web-interactions, the utilization
requires extremely fast computing facilities and hence it is largely
confined to relatively restricted systems with a limited number of
atoms. Consequently, this is why so many researchers have
resorted to some new modified continuum models.

Of all the new continuum models, Eringen's nonlocal theory
[6,7] has been extensively applied to exhibit the mechanical
properties and application potential in nanomechanics [3–5,8–22].
The common nonlocal theory contains integral and differential
nonlocal constitutive [23,24], respectively. The integral nonlocal
constitutive assumes that the nonlocal stress at a point is a function

of strains at all points in the domain, while the differential nonlocal
constitutive regards the stress at a reference point is not only
dependent on the strain at that point, but also related to the
gradient of strain at the same point. Despite the integral and
differential nonlocal constitutive, it is found that the nonlocal
theory is much different from the most classical continuum models
because the latter are based on elastic constitutive relation and it
assumes that the stress at a point is a function of strain at only that
particular point. On the other hand, the classical continuum models
have been proved to fail in nanomechanics. For example, according
to the classical continuum theory, the stress is singular at a crack tip
despite how weak the external load is. However, it is no doubt that
each material has limited fatigue strength and in fact, both atomic
simulation and experiment proved its nonsingularity at the crack
tip. Similarly, such nonsingularity was also observed since the
nonlocal theory was utilized to reveal the stress concentration at
the tip of crack [25]. This is because the nonlocal continuum theory
contains information about the forces between atoms, and the
internal length scale is introduced into the constitutive equation as
a material parameter. Therefore, the nonlocal theory has been one
of the most popular approaches to investigate the mechanical
features of nanomaterials or nanostructures during the past dec-
ades. For instance, based on the Eringen's nonlocal theory, Aydogdu
[11] presented a generalized nonlocal beam theory to investigate
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the nanobeam bending, buckling and free vibration. Various beam
theories including those of Euler-Bernoulli, Timoshenko, Reddy,
Levinson and Aydogdu were considered as some special cases. It
was concluded that the bending deflection increases, while the
critical buckling load and vibration frequency decrease with
increasing the nonlocal effects. Consequently, nanobeam stiffness
is lower than that predicted by classical continuum mechanics [11].
Yu and Lim [22] studied the axisymmetric bending of annular
nanoplates which may model the graphene sheets based on the
nonlocal elasticity theory and developed a new nonlinear nonlocal
constitutive relation in polar coordinates. They introduced an
iterative procedure to solve the coupled nonlinear constitutive
and expressed the nonlocal stress asymptotically in stress gradients.
It was indicated that the deflection decreases with increasing
nonlocal effects. Similar stiffness enhancement effects were also
observed clearly in some other literatures (see e.g. [13,14]).

Although the nonlocal elasticity theory has been applied to
some research topics on carbon nanotubes (e.g. see [3–5,10,13–
15,17–19]), only a few of them are focused on torsional vibration of
such common nanostructure [15,18,19]. As we know, torsional
deformation and vibration are very common for carbon nanotubes
subjected to external forces in some new nanoscale devices such
as nano-electromechanical system (NEMS). Even in the existing
fewer literatures, the torsional conclusions are quite different
[15,19]. Hao et al. [15] presented the torsional thermal buckling
behaviors of multi-walled carbon nanotubes by nonlocal theory.
The critical buckling strain was found to be smaller than the ones
from the classical theory and hence the nonlocal stiffness soft-
ening effects were concluded. However, Li et al. [19] studied the
torsional statics and dynamics of circular nanosolids (e.g. nanor-
ods/nanotubes) based on the enhanced nonlocal model and they
concluded the angular displacement decreases while the natural
frequency increases with an increase in nonlocal nanoscale effects.
Due to the inconsistency in current nonlocal nanostructural
studies, two nonlocal continuum models for torsional vibration
of carbon nanotubes are constructed in this work, respectively, and
the nonlocal effects on size-dependent natural frequency are taken
into account in each model. Surprisingly, the two nonlocal models
(i.e. the weakened and enhanced models) derive some opposite
size-dependent phenomena, just like the reports in [15] and [19].
Actually, similar reverse conclusions have been reported on the
bending behaviors of nanobeams or wave propagation of carbon
nanotubes, e.g. weakened model [3,8,15], enhanced model
[13,14,16]. Hence, people are really confused with these different
predictions because each model has been investigated and published
extensively [3,8,11–16,18–22]. Subsequently, a semi-continuummodel
with relaxation phenomenon for torsional vibration is proposed to
judge which nonlocal model is correct. It is found that relaxation
coefficient in semi-continuum model is a critical factor in nanoscale
materials and structures, and the two kinds of nonlocal size-
dependent predictions are related to such relaxation coefficient. When
the relaxation coefficient is larger than 1.0, the semi-continuum
torsional model degenerates to the weakened nonlocal model, while
when the relaxation coefficient is less than 1.0, the semi-continuum
model degenerates to the enhanced nonlocal counterpart. Therefore,
both of the two nonlocal models are proved to be reasonable and they
depend on the specific surface properties and atomic relaxation type
of the nanomaterial.

The content of the present work is structured as follows: in Section
2 we developed two different nonlocal elasticity models for torsional
vibration analyses according to the weakened model and enhanced
model, respectively. Natural frequencies were determined and the
effects of nonlocal nanoscale were observed. Section 3 was devoted to
construct a semi-continuum torsional model for carbon nanotubes,
and the nonlocal nanoscale effects were also taken into account for
comparisons. Finally, the main conclusions were summarized in

Section 4. The results reported in this research could be useful for
understanding the nonlocal effects and further optimizing some new
nanostructures in NEMS.

2. Two nonlocal models

In this section, two kinds of nonlocal models for torsion
vibration are constructed, respectively. Nonlocal torsional natural
frequencies are determined and some comparisons of nonlocal
and classical solutions are illustrated. Our particular attention is
paid to the nonlocal size-dependence of natural frequency.

2.1. The weakened model

Nonlocal elasticity is a long-range force theory, of which the
differential nonlocal constitutive relation regards the stress at a
reference point depends on the classical stress and its gradients at
that point, given by [7]

½1�ðe0aÞ2∇2�tkl ¼ λεrrδklþ2μεkl ð1Þ
where tkl is nonlocal stress tensor, εkl is strain tensor, δkl is
Kronecker operator, λ and μ are Lame constants of materials, e0
is a constant dependent on each material, a is an internal
characteristic scale. For cylindrical nanostructures, length scale is
much larger than cross sectional scale. Therefore, nonlocal con-
stitutive relation expressed in Eq. (1) can be simplified as a one-
dimensional form. Since the object of this work is to research
torsional vibration, the nonlocal torsional relation between shear
stress and shear strain can be written as

sr�ðe0aÞ2
∂2sr
∂x2

¼ Gγr ð2Þ

where sr and γr are shear stress and strain at the point with a
distance r from center of the circular section, respectively, G is
shear modulus and x is the axial coordinate. Here the classical
shear strain satisfies

γr ¼ r
∂θ
∂x

ð3Þ

where θ is relative angular rotation between two sections.
Subsequently, the relation between torsion moment and rela-

tive angular rotation is thus determined from Eqs. (2) and (3), as

T�ðe0aÞ2
∂2T
∂x2

¼ GIP
∂θ
∂x

ð4Þ

where T ¼∬ArsrdA is the torsion moment, and IP ¼∬Ar2dA is the
polar moment of inertia with respect to the center of circular
section.

On the other hand, force analysis is applied to the element dx,
and the equilibrium equation is derived based on D0 Alembert
principle as

ρIP
∂2θ
∂t2

dx¼ ∂T
∂x

dx ð5Þ

where ρ is mass density of material, t is time. Consequently,
nonlocal governing equation of torsional vibration is obtained
from Eqs. (4) and (5), given by

ρ
∂2θ
∂t2

�ðe0aÞ2ρ
∂4θ

∂x2∂t2
¼ G

∂2θ
∂x2

ð6Þ

For a macroscale structure, the external characteristic scale is
far more than internal characteristic scale, e.g. Lba (L is length of
the carbon nanotube), hence the governing equation of torsional
vibration based on the classical continuum mechanics can be
recovered from Eq. (6) since e0a approaches zero.
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