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a b s t r a c t

This work considers the validity of the assumption that the influence of radial displacements and
bending strains can be ignored when constructing closed form analytical solutions for the large
displacement response of impulsively loaded circular plates. Three successive energy based analyses
are presented. The first analysis considers only membrane strains, but includes radial displacements in
addition to transverse displacements. It is shown that the inclusion of radial displacements alters the
plastic strain distribution but does not alter the integral of the total energy dissipated due to plastic
strain, and consequently, does not affect the final central deflection estimate. This result provides a
rigorous justification for the assumption that radial displacements can be ignored. However, though
neglectable, the radial displacements are not negligible and must be included in order to obtain realistic
strain distributions. Thereafter, a model is presented that considers the interaction of bending and
membrane strains. It is shown that at large displacements the membrane strains suppress the effect of
bending strains. This result supports the assumption that bending strains can be ignored at large
deflections. Furthermore, it provides an estimate for the displacement range in which the interaction
between bending and membrane effects is significant and should not be ignored. Lastly, the non-
monotonic nature of the strain history is considered and shown to have a small effect.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The body of literature relating to the impulsive loading of thin
circular plates is extensive [1–4] and contains numerous analytical
solutions covering various loading and response conditions. Theore-
tical models describing plate response characteristics are generally
categorized according to the assumptions upon which they are based.
For example, a common approach is to assume an ideal impulsive
load [5–8], i.e. the load is considered to be evenly distributed across a
plate with a duration that is negligible in comparison with the plate
response duration, and consequently, the plate is viewed as having an
instantaneous uniform initial velocity.

An important parameter is the magnitude of the final central
deflection relative to the plate thickness. For small displacements,
i.e. central deflections of up to half a plate thickness, bending
strains are assumed to dominate [9]. Under these circumstances,
assuming that the plate material is rigid-perfectly plastic and
obeys the Tresca yield condition with an associated flow rule, it is
possible to obtain an exact solution for the equations of motion

[10,11]. An example of this is the solution reported by Wang [5],
which captures important transient features, such as a plastic
hinge that originates at the plate boundary and travels radially
inwards.

For large displacements, i.e. central deflections that are several
times greater than a plate thickness, membrane strains that arise
from transverse, i.e. out of plane, displacements are assumed to
dominate [9], and the plate is typically treated as a rigid-perfectly
plastic membrane. A variety of analytical solutions to this problem
have been published [6,7,12–18].

Taylor [12] outlined an analytical approach which considers a
plastic hinge travelling radially inwards at a constant speed and
predicts a conical final plate shape. Similar models have been
presented by Hudson [13], Frederick [14] and Wierzbicki and
Nurick [18].

Duffey and Key [6,15] used an energy approach where the final
deflection is calculated by equating the initial kinetic energy to the
total energy dissipated through plastic deformation. This approach
requires the displacement profile of the plate to be assumed a
priori. Furthermore, it is implicitly assumed that the strain history
is monotonic, i.e. the total dissipated energy depends only on the
final plate shape and is not affected by transient features, such as a
travelling hinge.
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Symonds and Weirzbicki [7] used the mode approximation
technique developed by Martin and Symonds [19], and argued that
qualitatively meaningful results could be obtained by considering
only the governing equations of the final phase of motion. This
aspect is similar to the energy approach in that transient plate
profiles were not considered. Their analysis resulted in a final plate
shape in the form of a zeroth order Bessel function of the first kind.

A common feature of all the above-mentioned solutions is the
assumption that the effect of radial, i.e. in plane, displacements can
be ignored. In the small displacement range, this assumption is
reasonable and conforms to well established plate bending theory
[1]. In the large displacement range, the assumption has been
motivated by analogy, numerical results and experimental data.
Taylor [12] argued that the dynamic behaviour of a perfectly
plastic thin plate is analogous to a vibrating constant tension
membrane, the solution of which does not require the radial
displacement to be considered. A different approach was pre-
sented by Duffey and Key [6,15] who used the results of numerical
simulations to argue that radial displacements are negligible,
while Jones [9] cited the lack of radial displacements in the
experimental data of Griffith and Vanzant [20].

However, the assumption has also been called into question. In
particular, Nurick et al. [21] noted that neglecting radial displace-
ments results in a strain distribution that is essentially the inverse
of that which is obtained experimentally. Furthermore, they
presented a numerical mode approximation model, which included
radial displacements, and produced a strain distribution that matched
the experimental trend, which implies that radial displacements are
not negligible.

Another common feature of the aforementioned solutions is
that the interaction of bending and membrane strains is not
considered. This approach is not valid at intermediate displace-
ments, i.e. final central deflections in the range of a plate thickness,
for which a limited number of analyses have been published.

Jones [9] appears to be the first to incorporate both bending
moments and membrane forces in a solution for an impulsively
loaded circular plate. The plate response was divided into two phases.
Phase I was assumed to be bending dominated and resulted in a
solution that is identical to that of Wang [5] up to the point where the
travelling hinge reaches the plate centre. Thereafter, Phase II was
assumed to be membrane dominated and used the final phase I
displacement and velocity distributions as initial conditions for phase
II. The analysis is limited in that it is not applicable to problems where
the travelling hinge persists into the large deflection regime. Further-
more, while it incorporates both membrane and bending effects,
it does not consider their combined effect, i.e. the bending and
membrane effects are separate and uncoupled.

In subsequent work, Jones [22,1] presented solutions for the
impulsive loading of annular and circular plates that incorporated
combined, but uncoupled, bending and membrane effects. These
analyses are based on a yield condition originally proposed by
Hodge [23], which is a simplification of that presented by Onat and
Prager [24], who considered two bending moment and two
membrane force components that display non-linear interactions
[24,23]. The simplification proposed Hodge maintains force–force
and moment–moment interactions, but neglects interactions
between forces and moments, i.e. they occur simultaneously but
do not interact. The motivation for the simplification is that the
general equations of motion based on the interactive yield condi-
tion have proved to be mathematically intractable for all but the
simplest problems [9]. Hence, no exact closed form solutions using
the interactive yield condition are known, although Yu and Chen
[17] have presented a detailed approximate model incorporating
interactive yielding.

Wen [8] used a similar simplified yield condition with an
energy method incorporating a parabolic assumed displacement

plate profile. Unlike previous energy solutions for circular plates,
Wen considered the dissipation of energy due to simultaneous
bending and membrane strains, but in a summative sense without
coupling.

The models discussed above, and their common assumptions,
appear to be representative of the literature. To the authors'
knowledge, there is no published closed form analytical solution
for the impulsive loading of thin circular plates that treats bending
and membrane strains in a coupled sense. Furthermore, the effect
of radial displacements, and their interactions with bending
deformations, do not appear to be accounted for.

The purpose of this paper is threefold: Firstly, to present a
theoretical justification for the assumption that radial displace-
ments can be ignored when considering the maximum deflection
of an impulsively loaded thin circular plate in the large deflection
regime. Secondly, to present a model that incorporates coupled
interaction between bending and membrane strains, and use it to
estimate the displacement range for which the interaction should
not be ignored. Lastly, to consider the non-monotonic nature of
the strain history and assess its effect.

2. Radial displacement distribution

While absent in analytical models of impulsively loaded circu-
lar plates, deformation theories that include radial deflections
have been included in the analysis of quasi-statically loaded
membranes. Taylor [12] presented an approximate radial deflec-
tion solution that will form the basis of an analysis presented in
this paper and will, therefore, be considered in detail.

Taylor considered the radial equilibrium of a perfectly plastic
static membrane undergoing large deflection. The angle between
the membrane and the horizontal plane was assumed to be small
and, hence, the cosine of the angle was treated as unity, leading to
a radial equilibrium equation of form

r
dsr

dr
þsr�sθ ¼ 0 ð1Þ

where sr and sθ are the membrane stress is the radial and
circumferential directions, respectively.

Assuming that the membrane thickness does not change
appreciably, the perfect plasticity assumption implies a constant
flow stress which satisfies Eq. (1), since the variation of stress in
the radial direction vanishes and the radial and circumferential
stresses are equal at every point. Consequently, Taylor argued that
the Mises yield criterion and associated flow rule state that the
radial and circumferential strains will also be equal [12].

For an axisymmetric membrane that experiences radial dis-
placements in addition to large transverse deflections, the strain
distribution, ignoring higher order terms, is given by

εr ¼
1
2

dw
dr

� �2

þdu
dr

and εθ ¼
u
r

ð2Þ

where w and u are the displacement distributions in the trans-
verse and radial directions, respectively, while εr and εθ are the
strain distributions in the radial and circumferential directions,
respectively [12,25,9].

Taylor assumed a parabolic transverse displacement profile,
which has the form

w¼ ~w 1� r
Ro

� �2
" #

ð3Þ

where ~w is the central deflection and Ro is the outer radius.
Taylor used a parabolic profile because it is the exact solution

for a constant tension membrane subjected to uniform static
load, but it has also been applied to impulsively loaded plates
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