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a b s t r a c t

Free vibration of functionally graded (FG) beams subjected to different sets of boundary conditions is
examined in the present paper. Different higher-order shear deformation beam theories (SDBTs) have
been incorporated for the free vibration response of FG beam. The material properties of FG beam are
taken in the thickness direction in power-law form and trial functions denoting the displacement
components are expressed in algebraic polynomials. The Rayleigh–Ritz method is used to estimate
frequency parameters in order to handle to various sets of boundary conditions at the edges in a simple
way. Comparison of frequency parameters is carried out with the existing literature in special cases and
new results are also provided after checking the convergence of frequency parameters.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The present investigation is associated with the use of the
Rayleigh–Ritz method in free vibration response of functionally
graded beams. The Rayleigh–Ritz method (after Lord Rayleigh and
Walther Ritz) is an approximate computational technique which is
extensively used in several research areas. A brief idea about this
method can be available in [1–4]. Functionally graded materials
(FGMs) have been widely used in most of the industrial applica-
tions and structural engineering design viz. aerospace, nuclear,
biomedical, electronics and in many other fields. Concept of FGMs
was first enunciated in 1984 by a group of material scientists while
preparing a space-plane project in Japan [5]. FGMs are the special
composite materials that have been developed because of their
high temperature-resistant properties through a comparatively
less thickness. The primary constituents for these materials
are metal with ceramic or from a combination of materials. The
ceramic constituent provides high-temperature resistance due to
its low thermal conductivity. The ductile metal constituent on the
other hand prevents fracture caused by stresses due to high
temperature gradient in a very short span of time. The material
properties in FGMs vary continuously in the thickness direction in
power-law exponent form. The present literature reveals the
works done towards the analysis of FGMs by different researchers
throughout the globe.

Consequently, computational (numerical) techniques to ana-
lyze FGMs are also in huge demand in research sectors day-by-day.

Chakraborty et al. [6] proposed a new beam finite element based
on the first-order shear deformation theory to study the thermo-
elastic behavior of functionally graded beam structures. Shahba
et al. [7] investigated free vibration and stability analysis of axially
functionally graded Timoshenko tapered beams using classical
and non-classical boundary conditions through finite element
approach. Ruocco and Minutolo [8] have presented a field bound-
ary element model to solve elastic functionally graded materials
for two-dimensional stress analysis. A new approach has been
employed by Huang et al. [9] for investigating the vibration
behaviors of axially functionally graded beams with non-uniform
cross-section. Free bending vibration of rotating functionally
graded Euler–Bernoulli tapered beams with different boundary
conditions is investigated in [10] using the differential transform
method and the differential quadrature element method. An
improved third-order shear deformation theory is employed to
check thermal bucking and elastic vibration of functionally graded
beams [11].

As such, different researchers throughout the globe have imple-
mented various different SDBTs to estimate vibration response of
functionally graded structural beams. Aydogdu and Taskin [12]
studied the free vibration behavior of a simply supported FG
beam by using Euler–Bernoulli beam theory, parabolic shear
deformation theory and exponential shear deformation theory.
A new beam theory was considered by Sina et al. [13] different
from traditional first-order shear deformation beam theory to
analyze the free vibration of functionally graded beams with an
analytical approach. Şimşek [14] has examined vibration response
of a simply supported FG beam to a moving mass by using Euler–
Bernoulli, Timoshenko and the third-order shear deformation
beam theories. Using different higher-order shear deforma-
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tion beam theories, Şimşek [15] has also recently studied the
fundamental frequencies of FG beams subjected to different
boundary conditions. Alshorbagy et al. [16] have used the finite
element method to detect the free vibration characteristics of a
functionally graded beam. Recently, free vibration and stability of
axially functionally graded tapered Euler–Bernoulli beams are
investigated using the finite element method by Shahba and
Rajasekaran [17]. Using the analytical method, Thai and Vo [18]
have developed bending and free vibration of functionally graded
beams using various higher-order shear deformation beam
theories.

One may also see the use of the Rayleigh–Ritz and the Ritz
method to analyze vibration behavior of isotropic as well as FG
structural members. The Rayleigh–Ritz method (after Walther Ritz
and Lord Rayleigh) is an approximate numerical method to study the
natural vibration frequencies of different types of structural mem-
bers. The characteristic orthogonal polynomials in the Rayleigh–Ritz
method were used by Bhat [19] to estimate the transverse vibration
response of rotating cantilever beam with a tip mass. In another
literature by Bhat [20] computed the natural frequencies of rectan-
gular plates using characteristic orthogonal polynomials in the
Rayleigh–Ritz method. Singh and Chakraverty [21–23] studied trans-
verse vibration of elliptic and circular plates using orthogonal
polynomials in the Rayleigh–Ritz method satisfying different bound-
ary conditions viz. completely free, simply supported and clamped.
Vibration response of cross-ply laminated beams has been explained
in [24] and buckling analysis is done in [25] with general boundary
conditions by the Ritz method. The plane stress problem of an
orthotropic functionally graded beam with arbitrary graded material
properties along the thickness direction is investigated recently by
the displacement function approach by Nie et al. [26]. Pradhan and
Chakraverty [27] have also applied the Rayleigh–Ritz method to free
vibration of Euler and Timoshenko functionally graded beams subject
to various boundary conditions. Vo et al. [28] have presented static
and vibration analysis of FG beams using refined shear deformation
theory by using finite element formulation. Most recently, static and
free vibration of axially loaded rectangular FG beams is developed in
[29] based on the first-order shear deformation beam theory. It is
evident from the present literature that no detailed study is yet done
using the Rayleigh–Ritz method to study free vibration of FGM
beams with different shear deformation beam theories.

In view of the above, the objective is to develop a reliable and
efficient computational modelling for the vibration behaviors of
FGM beams subjected to different boundary conditions within the
framework of various SDBTs mentioned above. The origin of the
Cartesian co-ordinate system is spatially taken at the center of the
FG beam. Modelling of this problem and the solution methodology
using simple polynomial functions in the Rayleigh–Ritz method
has been developed. Trial functions denoting the displacement
fields in the subsequent numerical formulation part are expressed
in simple algebraic polynomial forms, which will satisfy the
essential boundary conditions for the ease of computation. Various
SDBTs viz. classical beam theory (CBT), Timoshenko beam theory
(TBT), parabolic shear deformation beam theory (PSDBT), expo-
nential shear deformation beam theory (ESDBT), trigonometric
shear deformation beam theory (TSDBT), hyperbolic shear defor-
mation beam theory (HSDBT) and a new shear deformation beam
theory (ASDBT) are demonstrated here to define the displacement
components. Results from our study are compared with those
obtained from literatures available and are found to be in good
agreement. New results for free vibration of FG beam subjected to
different sets of boundary conditions (BCs) viz. Clamped–Clamped
(C–C), Simply supported–Simply supported (S–S) and Clamped–
Free (C–F), are also obtained and hence reported. It is believed that
the tabulated results will probably help other researchers to
compare their results related to these problems.

2. Functionally graded materials

A straight FG beam of length L, width b and thickness h, having
rectangular cross-section with Cartesian coordinate system O
(x; y; z) and having the origin at O is shown in Fig. 1.

It is assumed that the material properties of FG beam vary
along the thickness direction according to power-law form as
shown in Fig. 2. The power-law variation used in [13] is considered

PðzÞ ¼ ðPc�PmÞ
z
h
þ1
2

� �k

þPm ð1Þ

where Pc and Pm denote the values of the material properties of
the ceramic and metal constituents of the FG beam respectively. k
(power-law exponent) is a non-negative variable parameter.
According to this distribution, the bottom surface (z¼ �h=2) of
FG beam is pure metal, whereas the top surface (z¼h/2) is pure
ceramic and for different values of k one can obtain different
volume fractions of material beam as mentioned in [12]. For our
present formulations, the material properties viz. Young's modulus
(E) and mass density (ρ) are taken to vary along the thickness
direction except Poisson's ratio (ν) remaining as constant.
In Fig. 2, FG constituents own the properties [13]: Em ¼ 70 GPa,
ρm ¼ 2700 kg/m3, Ec ¼ 380 GPa and ρc ¼ 3800 kg=m3.

3. Numerical modelling and formulation

Let us assume the deformation of functionally graded beam in
the x–z plane and denote the displacement components along x, y
and z directions by ux, uy and uz respectively. Based on the higher
order shear deformation beam theory, the axial displacement (ux)
and the transverse displacement (uz) of any point of the beam are
given in Eqs. (2) and (3) as below [12]

uxðx; zÞ ¼ uðx; tÞ�zw;xðx; tÞþΦðzÞvðx; tÞ ð2Þ

uzðx; zÞ ¼wðx; tÞ ð3Þ
where u and w represent the axial and the transverse displace-
ment of any point on the neutral axis respectively, while v is an
unknown function that represents the effect of transverse shear
strain on the neutral axis. Φ represents the shape function
determining the distribution of the transverse shear stress and
strain through the thickness of the beam and ð Þ;x indicates the
derivative with respect to x. Different theories can be obtained by
choosing their respective shape functions ΦðzÞ. The present study
is concerned with SDBTs viz. CBT, TBT, PSDBT, ESDBT, HSDBT,
TSDBT and ASDBT, as mentioned in [15]. ΦðzÞ for these shear
deformation beam theories are given in Eq. (4) as below [15]

CBT : ΦðzÞ ¼ 0
TBT : ΦðzÞ ¼ z

PSDBT : ΦðzÞ ¼ z 1�4z2

3h2

� �

ESDBT : ΦðzÞ ¼ ze�2ðz=hÞ2

Fig. 1. A typical functionally graded beam element with Cartesian coordinates.
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