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a b s t r a c t

We study the long time behaviour of the solutions of the third grade fluids equations in dimension 2.
Introducing scaled variables and performing several energy estimates in weighted Sobolev spaces, we
describe the first order of an asymptotic expansion of these solutions. It shows in particular that, under
smallness assumptions on the data, the solutions of the third grade fluids equations converge to self-
similar solutions of the heat equations, which can be computed explicitly from the data.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The study of the behaviour of the non-Newtonian fluids is a
significant topic of research in mathematics, but also in physics or
biology. Indeed, these fluids, the behaviour of which cannot be
described with the classical Navier–Stokes equations, are found
everywhere in the nature. For examples, blood, wet sand or certain
kind of oils used in industry are non-Newtonian fluids. In this paper,
we investigate the behaviour of a particular class of non-Newtonian
fluids that is the third grade fluids, which are a particular case to the
Rivlin–Ericksen fluids (see [29,30]). The constitutive law of such
fluids is defined through the Rivlin–Ericksen tensors, given recur-
sively by

A1 ¼∇uþð∇uÞt ;
Ak ¼ ∂tAk�1þu �∇Ak�1þð∇uÞtAk�1þAk�1∇u;

where u is a divergence free vector field of R2 or R3 which
represents the velocity of the fluid. The most famous example of
a Rivlin–Ericksen fluid is the class of the Newtonian fluids, which
are given through the stress tensor

σ ¼ �pIþνA1;

where ν40 is the kinematic viscosity and p is the pressure of the
fluid. Introduced into the equations of conservation of momentum,
this stress tensor leads to the well known Navier–Stokes equations.

In this paper, we consider a larger class of fluids, for which the
stress tensor is not linear in the Rivlin–Ericksen tensors, but a
polynomial function of degree 3. As introduced by Fosdick and
Rajagopal in [13], the stress tensor that we consider is defined by

σ ¼ �pIþνA1þα1A2þα2A
2
1þβ A1

�� ��2A1;

where ν40 is the kinematic viscosity, p is the pressure, α140,
α2AR and βZ0.

We assume in this paper that the density of the fluid is constant
in space and time and equals 1. Actually, the value of the density is
not significant, since we can replace the parameters ν, α1, α2 and β
by dividing them by the density. Introduced into the equations of
conservation of momentum, the tensor σ leads to the system

∂t u�α1Δu
� ��νΔuþcurl u�α1Δu

� �
4u

� α1þα2ð Þ A �Δuþ2div LLt
� �� ��β div A

�� ��2A� �
þ∇p¼ 0;

div u¼ 0;
u t ¼ 0j ¼ u0; ð1:1Þ

where L¼∇u, AðuÞ ¼∇uþð∇uÞt and 4 denotes the classical vector-
ial product of R3. For matrices A;BAMdðRÞ, we define A : B¼Pd

i;j ¼ 1 Ai;jBi;j and A
�� ��2 ¼ A : A. If the space dimension is 2, we use the

convention u¼ ðu1;u2;0Þ and curl u¼ ð0;0; ∂1u2�∂2u1Þ. Notice also
that if α1þα2 ¼ 0 and β¼ 0, we recover the equations of motion of
second grade fluids, which are another class of non-Newtonian
fluids, introduced earlier by Dunn and Fosdick in 1974 (see [10,15]
or [9]). If in addition α1 ¼ 0, then one recovers the classical Navier–
Stokes equations.

The system of Eq. (1.1) has been studied in various cases,
on bounded domains of Rd, d¼2, 3 or in the whole space Rd

(see [1–5,22,26]). On a bounded domain Ω of Rd with Dirichlet
boundary conditions, Amrouche and Cioranescu have shown the
existence of local solutions to (1.1) when the initial data belong to
the Sobolev space H3ðΩÞd (see [1]). In addition, these solutions are
unique. For this study, the authors have assumed the restriction

α1þα2j jr ð24νβÞ1=2;
which is justified by thermodynamics considerations. The proof of
their result is obtained via a Galerkin method with functions
belonging to the eigenspaces of the operator curl ðI�α1ΔÞ. In
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dimension 3, a slightly different method has been applied by Bresch
and Lemoine, who used Schauder's fixed point theorem to extend
the result of [1] to the case of initial data belonging to the Sobolev
spaces W2;rðΩÞ3, with r43. They have shown in [3] the local
existence of unique solutions of (1.1) in the space C0ð½0; T �;
W2;rðΩÞ3Þ, where T40. In addition, if the data are small enough
in the space W2;rðΩÞ3, the solutions are global in time. Notice also
that the existence of such solutions holds without restrictions on
the parameters of the system (1.1).

In the case of third grade fluids filling the whole space Rd, d¼2,3,
Busuioc and Iftimie have established the existence of global solutions
with initial data belonging to H2ðRdÞd, without restrictions on the
parameters or on the size of the data (see [4]). In this study, the
authors used a Friedrichs scheme and performed a priori estimates in
H2 which allow to show the existence of solutions of (1.1) in the
space L1locðRþ ;H2ðRdÞdÞ. Besides, these solutions are unique if d¼2.
Later, Paicu has extended the results of [4] to the case of initial data
belonging to H1ðRdÞd, assuming additional restrictions on the para-
meters of the equation; the uniqueness is not known in this space
(see [26]). The method that he used is slightly different from the one
used in [4]. Indeed, although Paicu also considered a Friedrichs
scheme, the convergence of the approximate solutions to a solution
of (1.1) is done via a monotonicity method. Notice that Theorem 1.1 of
this paper shows the existence of solutions of the equations of third
grade fluids on R2 for initial data in weighted Sobolev spaces (see
Section 3).

In what follows, we consider a third grade fluid filling the whole
space R2. Actually, the equations that we consider are not exactly
the system (1.1) but the one satisfied by w¼ curl u¼ ∂1u2�∂2u1. In
dimension 2, the vorticity equations of the third garde fluids are
given by

∂t w�α1Δw
� ��νΔwþu � ∇ w�α1Δw

� �
�β div A

�� ��2∇w� �
�β div ∇ A

�� ��2� �
4A

� �
¼ 0;

div u¼ 0;
w t ¼ 0j ¼w0 ¼ curl u0: ð1:2Þ

Notice that the parameter α2 does no longer appear in (1.2) and thus
does not play any role in the study of these equations. Indeed, due to
the divergence free property of u, a short computation shows that
curl A �Δuþ2 div LLt

� �� �¼ 0, or equivalently there exists q such that
A �Δuþ2 div LLt

� �¼∇q. This phenomenon is very particular to the
dimension 2 and does not occur in dimension 3. Notice also that the
previous system is autonomous in w. Indeed, the vector field u
depends on w and can be recovered from w via the Biot–Savart law,
which is a way to get a divergence free vector field such that
curl u¼w. The motivation for considering the vorticity equations
instead of the equations of motion comes from the fact that, due to
spectral reasons, we have to study the behaviour of the solutions of
(1.2) in weighted Lebesgue spaces. Indeed, in what follows, we will
consider scaled variables, which make appear a differential operator
whose essential spectrum can be ”pushed to the left” by taking a
convenient weighted Lebesgue space. We will see that the rate of
convergence of the solutions of (1.2) is linked to the spectrum of this
operator. Unfortunately, the weighted Lebesgue spaces are not suitable
for the equations of motions and are not preserved by the system (1.1).
Anyway, one can obtain the asymptotic profiles of the solutions of the
equations of motion (1.1) from the study of the asymptotic behaviour
of the solutions of the vorticity equations (see Corollary 1.1 below). We
also emphasize that the system (1.2) allows to consider solutions
whose velocity fields are not bounded in L2.

In this paper, we establish the existence and uniqueness of
solutions of (1.2) in weighted Sobolev spaces, but the main aim is
the study of the asymptotic behaviour of these solutions when t goes
to infinity. More precisely, we want to describe the first order asy-
mptotic profiles of the solutions of (1.2). We consider a fluid of third

grade which fills R2 without forcing term applied to it. In this case, as
it is expected, the solutions of (1.2) tend to 0 as t goes to infinity. Our
motivation is to show that these solutions behave like those of the
Navier–Stokes equations. In our case, we will show that the solutions
of (1.2) behave asymptotically like solutions of the heat equations, up
to a constant that we can compute from the initial data. The methods
that we use in the present paper are based on scaled variables and
energy estimates in several functions spaces. This work is inspired by
several older results obtained for other fluid mechanics equations.
The first and second order asymptotic profiles have been described
for the Navier–Stokes equations in dimensions 2 and 3 by Gallay and
Wayne (see [18–21]). In dimension 2, they have shown in [18,20] that
the first order asymptotic profiles of the Navier–Stokes equations are
given up to a constant by a smooth Gaussian function called the
Oseen vortex sheet. More precisely, for a solution w of the vorticity
Navier–Stokes equations (that is the system 1.2 with α1 ¼ β¼ 0), for
every 2rprþ1, the following property holds:

wðtÞ�
R
R2w0ðxÞ dx

t
G

: ffiffi
t

p
� 	



 





Lp
¼Oðt�3=2þ1=pÞ when t-þ1;

where G is the Oseen vortex sheet

GðxÞ ¼ 1
4π

e� xj j2=4: ð1:3Þ

The methods that they used in [18] are very different from the ones
that we develop in this paper. Although they also considered scaled
variables, the convergence to the asymptotic profiles is not obtained
through energy estimates. Indeed, using dynamical systems argu-
ments, they established the existence of a finite-dimensional mani-
fold which is locally invariant by the semiflow associated to the
Navier–Stokes equations. Then, they showed that, under restrictions
on the size of the data, the solutions of the Navier–Stokes equations
behave asymptotically like solutions on this invariant manifold. The
description of the asymptotic profiles is thus obtained by the
description of the dynamics of the Navier–Stokes equations on the
invariant manifold. Later, the smallness assumption on the data has
been removed (see [20]). In [24], Jaffal-Mourtada describes the first
order asymptotics of second grade fluids, under smallness assump-
tions on the initial data in weighted Sobolev spaces. She has shown
that the solutions of the second grade fluids equations converge also
to the Oseen vortex sheet. In this paper, we apply the methods used
by Jaffal-Mourtada, namely scaled variables and energy estimates.
According to these results, one can say that the fluids of second grade
behave asymptotically like Newtonian fluids. In this paper, we show
that, under the same smallness assumptions on the initial data, the
same behaviour occurs for the third grade fluids equations. We
emphasize that the rate of convergence that we obtain is better than
the one obtained in [24]. Actually, we show that we can choose the
rate of convergence as close as wanted to the optimal one, assuming
that the initial data are small enough. Since second grade fluids are a
particular case of third grade fluids, we establish an improvement of
the rate obtained in [24]. Actually, the main difference between third
and second grade fluids equations in dimension 2 is the presence of
the additional term β div A

�� ��2A� �
in the third grade fluids equations.

Sometimes, this term helps to obtain global estimates, like in [4] or
[26], but introduces additional difficulties when one looks for
estimates in H3 or in more regular Sobolev spaces (see [1,2] or [5]).
Here, we have to establish estimates inweighted Sobolev spaces with
H2 regularity for the vorticityw, which is harder than doing estimates
in H3 for u.

We next introduce scaled variables. In order to simplify the
notations, we assume that ν¼ 1. Let T41 be a positive constant
which is introduced in order to avoid restrictions on the size of the
parameter α1 and which will be made more precise later. We cons-
ider the solution w of (1.2) and define W and U such that curl U ¼W
through the change of variables X ¼ x=

ffiffiffiffiffiffiffiffiffiffi
tþT

p
and τ¼ log ðtþTÞ.
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