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a b s t r a c t

A long standing and very challenging problem is to predict the ultimate strength of a fibrous laminate
under arbitrary load condition only based on the mechanical properties of its constituents measured
independently. Although the Bridging Model is unique for calculating the internal stresses in the
constituent fiber and resin (which stands for a matrix material throughout this paper) materials
subjected to any load including a temperature variation, the in situ mechanical properties of the
constituents must be provided beforehand. A unidirectional (UD) composite exhibits a transverse tensile
strength smaller than the tensile strength of the monolithic resin material, indicating that the in situ
tensile strength of the resin in the transverse direction is different from that measured using monolithic
material specimens. This is attributed to a stress concentration. The stress concentration factors (SCFs) of
the resin material in a RVE (representative volume element) due to occurrence of the fiber are
determined in terms of elasticity theory. The resin in situ tensile, compressive, and shear strengths in
the transverse plane are obtained by the corresponding resin strengths measured independently divided
by the respective SCFs, whereas the resin in situ longitudinal strengths together with all the other
constituent properties are the same as their original counterparts. Using these originally provided
constituent properties as input data, the Bridging Model has been applied to analyze the second World-
Wide Failure Exercise (WWFE-II) problems. The model's predictions for all the problems have been
compared with available experimental data. Favorable correlation has been found.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

It has been a long-term dream in the composite community
that the mechanical properties including ultimate strength of a
fibrous laminate subjected to an arbitrary load condition are
estimated with reasonable accuracy only based upon an estab-
lished constituent material database and all the geometrical
parameters of the constituents without doing any experiment on
the laminate or any of its consisting laminae [1]. Once this dream
becomes a reality, the design and development of a new composite
structure will be much easier and more efficient and expanded use
of composites can be expected. To achieve this, a necessary
condition is to know the internal stresses generated in the
constituent fiber and resin materials of the composites at every
load level. According to the assessment of the WWFE-I (the first
World-Wide Failure Exercise), the Bridging Model established by
the author was the only theory attended the exercise which was
able to calculate the thermal stresses in the constituents due to a
temperature variation [2].

However, the use of the Bridging Model for laminate strength
prediction is not sufficient, as the model itself is only capable of
describing the constitutive relationship of a UD lamina up to
failure and of calculating its internal stresses in the constituent
fiber and resin materials due to the application of an external load.
To determine a lamina failure micromechanically, some stress
failure criteria for the fiber and resin must be assigned. As can
be understood, different failure criteria can result in different
predicted strengths for the lamina even though the stress evalua-
tions for the fiber and resin are accurate. More other issues must
be resolved before a laminate failure analysis and ultimate
strength prediction can be accomplished. These include, among
others, a criterion for detecting an ultimate failure of the laminate
and a stiffness discount scheme for a failed lamina if this failure is
not correspondent to an ultimate failure. The most important is
that the constituent in situ mechanical properties must be pro-
vided as some of them can be different from those measured
independently.

It was found that the application of the Bridging Model in its
early stage to predictions for the WWFE-I problems was only
moderate in correlation with the experiments, although some
better than the performances of the two other micromechanics
models took part in the exercise [3]. There were two reasons why
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the predictions were not very high in accuracy. One was that the
last-ply failure was defined as an ultimate failure, and another was
that a total stiffness discount scheme was employed for any failed
lamina no matter whether that failure was caused by a fiber or a
resin failure. A significant advancement was made in Ref. [4], by
incorporating a new ultimate failure criterion, a partial stiffness
discount scheme, and a pure resin interlayer into two adjacent
primary lamina layers. The predicted accuracy for the WWFE-I
problems was improved a great deal, with a total score attained
even higher than that obtained by any other phenomenological
strength theory assessed in the exercise [4]. Unfortunately, the
constituent in situ properties, mainly the resin in situ strength
parameters, were still determined by retrieving from the strength
data of the UD laminas. This has blinded the key advantage of
applying the Bridging Model, namely to predict composite failure
and ultimate strength without doing any experiment on the
composite. Only after all the in situ mechanical properties of
the constituents are defined upon independently measured
property data, can the key advantage of the Bridging Model be
realized.

Whereas all the elastic–plastic property parameters of the fiber,
if any, and the resin required by the application of the Bridging
Model can be taken to be those measured independently, the resin
in situ transverse tensile strength must be smaller than its original
counterpart, as a UD lamina exhibits a transverse tensile strength
smaller than the resin tensile strength measured using monolithic
material specimens. It is well known that there occurs a stress
concentration when a plate of an isotropic material contains a
circular hole. The in-plane tensile strength of the plate containing
the hole is only one-third of its original strength. Similarly, there
must be a stress concentration in the resin when a circular fiber
cylinder is embedded in it. In terms of the stress fields obtained on
elasticity theory, the stress concentration factors (SCFs) corre-
sponding to transverse normal and shear stresses are determined.
The resin in situ transverse strengths (tensile, compressive, and
shear strengths) can be defined by the measured counterparts
using monolithic resin specimens divided by the SCFs.

In this work, the WWFE-II problems have been analyzed by
virtue of the Bridging Model only using the constituent mechan-
ical properties originally provided by the organizers [5]. The
model's predictions have been compared with available experi-
mental data. Good correlation has been found between the
predictions and the experiments. Detailed analyzing procedures
are described in the subsequent sections.

2. Summary of the Bridging Model

To make this presentation self-contained, the bridging model
theory is briefly summarized in this section. For more details, refer
to our monograph [6].

2.1. Model development

Suppose a RVE (Fig. 1) of a UD composite is subjected to any
stress state {si}T¼{s11, s22, s33, s23, s13, s12}. Using an incremental
approach, the stress increments generated in the resin and the
fiber can be correlated by a non-singular matrix, called a bridging
matrix, through

fdsmi g ¼ ½Aij�fdsfj g ð1Þ

Making use of two fundamental homogenized equations for the
RVE, i.e.,

fdsig ¼ Vf fdsfi gþVmfdsmi g; ð2Þ

fdεig ¼ Vf fdεfi gþVmfdεmi g; ð3Þ
where Vf and Vm are the fiber and resin volume fractions with
understanding that Vf þVm¼1 and {dεi}¼{dε11, dε22, dε33, 2dε23,
2dε13, 2dε12}T, together with the constitutive equations for the
fiber, resin, and the composite, i.e,

fdεfi g ¼ ½Sfij�fds
f
j g ð4:1Þ

fdεmi g ¼ ½Smij �fdsmj g ð4:2Þ

fdεig ¼ ½Sij�fdsjg ð4:3Þ
where ½Sfij� and ½Smij � are the compliance matrices of the fiber and
the resin materials already known, one can easily obtain the
following three fundamental equations of the Bridging Model:

fdsfi g ¼ ðVf ½I�þVm½Aij�Þ�1fdsjg ¼ ½Bij�fdsjg; ð5Þ

fdsmi g ¼ ½Aij�ðVf ½I�þVm½Aij�Þ�1fdsjg; ð6Þ

½Sij� ¼ ðVf ½Sfij�þVm½Smij �½Aij�ÞðVf ½I�þVm½Aij�Þ�1: ð7Þ

The total stresses in the fiber and resin at the current load level are
simply updated through

fsfi gkþ1 ¼ fsfi gkþfdsfi g; k¼ 1;…; ð8:1Þ

fsmi gkþ1 ¼ fsmi gkþfdsmi g; k¼ 1;…; ð8:2Þ
whereas the stresses on the composite are given by

fsigkþ1 ¼ fsigkþfdsig; k¼ 1;…; ð8:3Þ
In Eqs. (5)–(7), [I] is a unit matrix. Thus, the only quantity to be
determined is the bridging matrix [Aij].

2.2. Characterization of the bridging matrix

The elements of the bridging matrix can be separated into
dependent and independent. As a UD composite is transversely
isotropic with only five independent material parameters, the
bridging matrix [Aij] can only have five independent elements.
Without any lost of generality and in light of the characteristics of
the compliance matrix of the composite, let us take A11, A22¼A33,
A31¼A21, A32, and A55¼A66 to be independent. All the other
elements are dependent, which should be determined according
to the symmetric condition of the compliance matrix, i.e. (refer to
Eq. (7))

Sji ¼ Sij; i; j¼ 1;2;…;6 ð9Þ
It is noted that the element A44 is not independent, but should be
obtained from the following equation for an elastic solution:

S44 ¼ 1=G23 ¼ 2ð1þν23Þ=E22 ¼ 2ðS22–S23Þ; ð10Þ
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Fig. 1. A RVE (representative volume element) of a UD composite.
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