ARTICLE IN PRESS

Applied Surface Science xxx (2017) xxx-xxx

Contents lists available at ScienceDirect

Applied Surface Science

journal homepage: www.elsevier.com/locate/apsusc

Full Length Article

Surface reaction of silicon chlorides during atomic layer deposition of silicon nitride

Luchana L. Yusup^a, Jae-Min Park^a, Tirta R. Mayangsari^a, Young-Kyun Kwon^{b,*}, Won-Jun Lee^{a,*}

^a Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, Korea
^b Department of Physics and Research Institute for Basic Sciences, Kyung Hee University, Seoul 02447, Korea

ARTICLE INFO

Article history: Received 31 October 2016 Received in revised form 4 June 2017 Accepted 5 June 2017 Available online xxx

Keywords: Density functional theory (DFT) Atomic layer deposition (ALD) Silicon nitride Silicon chlorides Surface reaction

ABSTRACT

The reaction of precursor with surface active site is the critical step in atomic layer deposition (ALD) process. We performed the density functional theory calculation with DFT-D correction to study the surface reaction of different silicon chloride precursors during the first half cycle of ALD process. SiCl₄, SiH₂Cl₂, Si₂Cl₆ and Si₃Cl₈ were considered as the silicon precursors, and an NH/SiNH₂*-terminated silicon nitride surface was constructed to model the thermal ALD processes using NH₃ as well as the PEALD processes using NH₃ plasma. The total energies of the system were calculated for the geometry-optimized structures of physisorption, chemisorption, and transition state. The order of silicon precursors in energy barrier, from lowest to highest, is Si₃Cl₈ (0.92 eV), Si₂Cl₆ (3.22 eV), SiH₂Cl₂ (3.93 eV) and SiCl₄ (4.49 eV). Silicon precursor with lower energy barrier in DFT calculation showed lower saturation dose in literature for both thermal and plasma-enhanced ALD of silicon nitride. Therefore, DFT calculation is a promising tool in predicting the reactivity of precursor during ALD process.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Silicon nitride is one of the most popular dielectric materials in semiconductor manufacturing process due to its unique properties, such as high etching selectivity against silicon oxide, superior diffusion barrier against copper or alkali ions, high charge trap density, and high dielectric constant. Major application of silicon nitride includes the sidewall spacer of CMOS device [1] and the charge trap layer in three-dimensional NAND flash device [2]. Silicon nitride thin films have been produced by low-pressure or plasma-enhanced chemical vapor deposition (CVD) techniques, and recently atomic layer deposition (ALD) technique was introduced for better step coverage and better film quality at lower temperatures. Silicon chloride precursors, such as SiCl₄ [3], SiH₂Cl₂ [4,5] and Si₂Cl₆ [6], were used as the silicon precursors with ammonia or hydrazine [8] as reactants in the thermal ALD of silicon nitride at 450 °C or higher temperatures. Plasma-enhanced ALD (PEALD) process is gaining attention due to lower deposition temperature and lower saturation dose as compared with thermal ALD.

http://dx.doi.org/10.1016/j.apsusc.2017.06.060 0169-4332/© 2017 Elsevier B.V. All rights reserved. PEALD of silicon nitride using silicon chloride precursors, such as SiH₂Cl₂ [7] and Si₂Cl₆ [8], with NH₃ plasma were reported at lower deposition temperatures below 400 °C. The high reactivity of plasma species can give opportunity to use various precursors in deposition process, and the PEALD using aminosilane precursors, such as trisilylamine (TSA) [9], bis(tert-butylamino)silane (BTBAS) [10,11] and tris(dimethylamino)silane (TDMAS) [12], were also reported. Experimental and theoretical studies comparing nitriding agents showed that N₂ plasma gives the highest growth rate in PEALD using BTBAS, and N₂/H₂ or NH₃ plasma produces hydrogenterminated silicon nitride surface which hinders the reaction of aminosilane precursor with the surface [13].

Only few theoretical study described the effect of silicon precursors in thermal ALD or PEALD of silicon nitride. In our previous work [14], we reported the effect of different surface active sites of silicon nitride on the reactivity of silicon chloride precursors, SiCl₄ and Si₂Cl₆. Density functional theory (DFT) calculation showed that the reaction of silicon chlorides on NH/SiNH₂*-terminated surface were plausible due to exothermic energy of chemisorption reaction. We also found out that different precursors can give different reactivity towards the surface.

Therefore, in the present work we focuses on comparison of the reactivity of different silicon chloride precursors. ALD processes of silicon nitride using silicon chloride precursors are popular

Please cite this article in press as: L.L. Yusup, et al., Surface reaction of silicon chlorides during atomic layer deposition of silicon nitride, Appl. Surf. Sci. (2017), http://dx.doi.org/10.1016/j.apsusc.2017.06.060

^{*} Corresponding authors.

E-mail addresses: ykkwon@khu.ac.kr (Y.-K. Kwon), wjlee@sejong.ac.kr (W.-J. Lee).

ARTICLE IN PRESS

L.L. Yusup et al. / Applied Surface Science xxx (2017) xxx-xxx

Tá	able 1
B	ond lengths and bond angles of the optimized silicon chlorides

Precursors	Bond Length (Å)		Bond Angle (°)	
SiCl ₄ *	Si-Cl	2.042	Cl–Si–Cl	109.5
SiCl ₄	Si-Cl	2.044	Cl-Si-Cl	109.5
SiH ₂ Cl ₂	Si-Cl	2.059	Cl-Si-Cl	111.0
	Si-H	1.478	H–Si–H	113.0
Si ₂ Cl ₆	Si-Cl	2.053	Cl-Si-Cl	109.8
	Si-Si	2.335	Cl–Si–Si	109.1
Si ₃ Cl ₈	Si-Cl (terminal)	2.054	Cl-Si-Cl (terminal)	109.8
	Si-Cl (mid)	2.062	Cl-Si-Cl (mid)	111.1
	Si–Si	2.345	Cl-Si-Si	109.6
			Si-Si-Si	113.6

*Without DFT-D correction.

especially in memory device manufacturing due to its superior film quality as compared with the ALD using aminosilane precursors. Chemisorptions of SiCl₄, SiH₂Cl₂, Si₂Cl₆ and Si₃Cl₈ molecules on NH/SiNH₂*-terminated surface were comparatively studied to model the thermal ALD process using NH₃ and the PEALD process using NH₃ plasma. The total energies of the system were calculated for the geometry-optimized structures of physisorption, chemisorption, and transition state. The order of silicon precursors in energy barrier was determined, and was compared with ALD experiments in literature.

2. Calculation details

First principle density functional theory calculations were performed using Material Studio 7.0 with Dmol³ package (BIOVIA, USA) [15,16]. All of the optimized structures and energies were obtained by the Perdew-Burke-Ernzerhof (PBE) scheme [17] in the generalized gradient approximation (GGA) for exchange correlation functional, with the double numerical polarization (DNP) as a basis set [18–20]. Octupole scheme for multipolar expansion with scalar relativistic effect were included for more precise results, because the octupole scheme gave a good convergence of energy for the calculation of system that involved a lone pairs of electron [21]. Smearing of 9×10^4 Ha and dipole slab correction in the orbital occupancy scheme were applied. We used a customized quality of convergence tolerance without symmetry constraint until the total energy change was converged to 10⁶ Ha and all the atomic forces became smaller than 2×10^4 Ha Å⁻¹. We also compared the calculation results with and without dispersion corrections using DFT-D (Grimme) [22] method in order to observe the influence of the non-covalent forces. Since the non-covalent forces such as van der Waals force or hydrogen bonding can be accounted properly by high quantum-chemical wave function such as Quantum Monte Carlo, the semi-empirical approaches such as DFT-D correction give the best compromise in the standard DFT dispersion terms [23].

We constructed the geometry-optimized NH/SiNH₂*terminated silicon nitride surface using the method described in our previous study [14] with an addition of DFT-D correction, except in Fig. 1(a) which is produced without DFT-D correction. We also optimized structures of silicon chloride molecules using DFT-D correction. The optimized bond lengths and bond angles of silicon chloride molecules of the present work are summarized in Table 1.

The "unbound" state was constructed by placing the geometryoptimized precursor molecule above the geometry-optimized surface with a distance of >10 Å. To model the physisorption process, the precursor was placed 4Å above the surface in several positions, then geometry optimization was performed for searching the lowest total energy of physisorption [24–26]. The structure with the lowest total energy value is called as "initial" structure. Based on the initial structure, we considered several possible chemisorption reactions, then optimized the geometry for searching the lowest total energy of chemisorption. The structure with the lowest total energy value is called as "final" structure.

Finally, the transition state (TS) search was performed [27–29] in order to obtain the energy barrier between the physisorption (initial structure) and the chemisorption (final structure). The TS search task was performed based on the linear synchronous transit (LST), followed by repeated conjugate gradient minimization and quadratic synchronous transit (QST) maximizations approach.

3. Results and discussion

3.1. SiCl₄ precursor

Fig. 1 shows the total energies of the unbound, initial, TS and final structures for the reaction of SiCl₄ on an NH/SiNH₂-terminated surface without [14] and with the DFT-D correction scheme. The initial structure shows the physisorption of a SiCl₄ molecule on the surface. The energy of physisorption is -0.05 eV without DFT-D correction or -0.34 eV with DFT-D correction, which shows that the physisorption process is exothermic. The distance between the Si atom in the precursor and the N atom of the surface is 4.38 Å without DFT-D correction or 3.93 Å with DFT-D correction. The TS structure shows the dissociation of a Cl atom from the precursor and the dissociation of an H atom from the surface to produce HCl. When DFT-D correction is included, the precursor is closer to the surface, reducing the distance between the Si atom of SiCl₄ and the N atom of the surface from 3.16 Å to 2.82 Å. The energy barrier of 4.89 eV or 4.49 eV was generated by TS search, which corresponds to the dissociation energy of Cl₃Si–Cl (4.77 eV) [30] or N–H $(\sim 3.5 \text{ eV})$ [31]. In the final structure, the SiCl₄ molecule chemisorbs on the surface by forming an Si-N bond and an HCl molecule as the byproduct. Energy of chemisorption is -1.11 eV or -1.78 eV depending on the presence of the DFT-D correction, which shows the process is exothermic.

The DFT-D correction did not affect the reaction mechanism, and the initial, TS and final structures with DFT-D correction in Fig. 1(b) look similar with the structures without the correction in Fig. 1(a). However, the reaction between the precursor and the silicon nitride surface became stronger with DFT-D correction. The energies of initial, TS and final structures are lowered and the distance between the precursor and the surface was reduced by the correction. Since the silicon nitride surface of the present study is NH/SiNH₂*-terminated and fully covered by hydrogen atoms, the non-covalent force between H and Cl would be important. We have confirmed that the reaction mechanism for other silicon chlorides is the same regardless of the DFT-D calibration. This paper reports the calculation results with the correction.

3.2. SiH₂Cl₂ precursor

We compared SiH₂Cl₂ with SiCl₄ to investigate the effect of hydrogen atoms in SiH₂Cl₂. The total energies of the unbound, initial, TS and final structures for the reaction of SiH₂Cl₂ on NH/SiNH₂*-terminated silicon nitride surface are shown in Fig. 2. The physisorption structure shows the energy of -0.135 eV and the distance between the Si atom in the precursor and the N atom of the surface is 3.66 Å. The TS structure shows that an H atom from the surface and an H atom from the precursor are dissociated to form H₂, unlike the case of SiCl₄. The distance between the Si atom of the surface is reduced to 2.47 Å, and the energy barrier of 3.93 eV was obtained by TS search. Lower dissociation energy of Si–H bond (3–3.3 eV)[31–34] as compared with Si–Cl bond (3.9–4.8 eV) [31–34] correspond to the lower energy barrier in the SiH₂Cl₂ case. In the final structure, the chemisorption gives

Please cite this article in press as: L.L. Yusup, et al., Surface reaction of silicon chlorides during atomic layer deposition of silicon nitride, Appl. Surf. Sci. (2017), http://dx.doi.org/10.1016/j.apsusc.2017.06.060

2

Download English Version:

https://daneshyari.com/en/article/7836293

Download Persian Version:

https://daneshyari.com/article/7836293

Daneshyari.com