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a b s t r a c t

Nanostructures have been receiving extensive attention during the last two decades, due to their peculiar
mechanical and other physical properties as compared with other macrostructures and macrosystems.
The mechanical properties of nanostructures are intensely size-dependent. Furthermore, in the absence
of external forces, nanostructures have a great tendency to deform due to their surface effects. Moreover,
since the atoms on the surface have different equilibrium configuration from that of in the bulk, the
elastic stiffness of the surface can be different from that of the bulk. In this study an ultra-thin plate of
nanoscale thickness with an arbitrary geometry and boundary conditions is analyzed. A rectangular plate
with nanoscale thickness is presented. In order to generalize the study, a multicrystalline plate with
varying crystal properties has been assumed. Furthermore, the mechanical properties of the plate are
dependent on the orientation. In fact the multicrystalline nanoplate is an anisotropic plate. The shapes
and orientations of each crystal have been chosen haphazardly. However, the entire shape of the plate is
a rectangle of microdimension with nanothickness. Due to the fact that silicon is much more applicable
than any other material in Nanoelectromechanical systems (NEMS), it is assumed that the plate is made
of silicon. The plate is subjected to a static load and the deformation as well as the corresponding strain is
demonstrated. Due to the fact that the governing equation of the plate and its solution is not too
straightforward to be solved easily, the finite element method is implemented so as to obtain the
corresponding results. The results which have been achieved by the method of finite element and by
employing the ANSYS software are illustrated and compared. Accordance of the results is quite
remarkable.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Mechanical properties and behavior of solids and structures are
strongly size-dependent whenever the ratio of the surface area to
the volume of the bulk becomes prominent. As a matter of fact, in
nanoscale structures such as nanobeams, nanotubes, nanoplates,
nanowires etc., due to their high ratio of the surface to the volume,
the size dependency behavior of solids and structures cannot be
overlooked. Moreover, the conventional theory of elasticity cannot
be implemented due to size-dependence of a nanomechanical
device. Consequently, in addition to the bulk properties presented
in the theory of elasticity, surface effects namely surface elasticity
(ES), surface residual stress (τS) and surface mass density (ρS), will
be described to define the mechanical behavior of nanostructures
and devices.

Numerous theoretical research have been done on the surface
effects. For instance, developing the conventional theory of elas-
ticity by introducing surface elasticity was first elaborated by
Gurtin and Murdoch in 1974 [1].

The mechanical quantity of surface effects for widespread
materials was investigated by Shenoy [2]. Numerous authors
studied surface effects in nanoplates and thin films. For instance,
Stoney studied the effects of surface and interface stresses on the
mechanical responses of thin films [3]. Moreover, changing the
thickness of thin films breeds the changing of the Elastic Modulus.
This investigation was elaborated by Cammarata and Sieradzki [4].
The size-dependent self-buckling and bending behaviors of nano-
plates by considering surface effects was investigated by Wang
and Zhao [5]. In spite of most contribution which neglects the
residual stress, in this study the effect of residual stress which is
induced by surface tension is considered. Guo and Zhao presented
a theoretical model to investigate the size-dependent bending
properties of nanobeams by considering surface relaxation as well
as surface tension [6]. In this study the effective flexural rigidity
and effective elastic modulus of a bending beam are derived. Thus,
forecasting the mechanical properties and responses of nanoplates
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and thin films plays a leading role in the study of nanoplates. In
addition to foregoing studies, numerous investigations have been
elaborated based on the finite element method to determine the
exact responses of nanoplates and thin films. Javili and Steinmann
contributed the framework of the finite element method for the
two-dimensional deformations of solids [7]. Furthermore, they
contributed the framework of the finite element method for the
three-dimensional case [8]. The Finite element method was for-
mulated by Wang and coworkers for two-dimensional nanoscale
structures by considering surface effects [9]. In order to investigate
the size-dependent mechanical behavior in nanosystems, a finite
element code was elaborated [10]. A similar investigation for a
two-dimensional nanoscale structure in an elastic matrix was
studied by Tian and Rajapakse [11]. The effect of grain size on
the macro-young0s Modulus and on the macro-Poisson0s ratio was
presented by Zhang and Sun [12]. The deformation of an elastic
matrix as well as spherical nanocavities was studied by Yang [13].

In order for the equilibrium equations to be satisfied, it is
shown that the existence of additional energies at the surface
always changes the geometry of the nanostructures [14]. Several
research were presented on the mechanical properties of silicon,
which is a prevalent material in designing nanostructures and
nanosystems. For instance, Young0s Modulus, Shear Modulus and
Poisson0s ratio of silicon was studied by Wortman and Evans [15].
Jing and Meng studied the mechanical properties of crystalline
silicon as well as amorphous silicon [16]. In addition, several
investigations were presented in order to obtain the mechanical
properties of amorphous silicon [17–21].

It should be noted that theoretical studies of this kind are
strongly limited to systems of rudimentary geometry. Hence for
systems of sophisticated geometry, it is far more suitable to use
alternative methods such as the finite element method (FEM)
instead of implementing conventional theoretical approach. With
respect to this reason, the finite element method is implemented in
this work. In this contribution we ponder over a multicrystalline
nanoplate, which consists of several crystals with distinct orienta-
tion and static behavior of the multicrystalline nanoplate is inves-
tigated. In order to obtain the mechanical responses of the
multicrystalline nanoplate, fundamental relations are derived and
based on these relations, FEM codes are generated. The multi-
crystalline nanoplate behavior is simulated by employing the ANSYS
software [22]. Finally, the results are compared and discussed.

2. Fundamental and governing equations

Fig. 1 shows a multicrystalline plate with width and length of
microscale and thickness of nanoscale. Each crystal is assumed to
be orthotropic and for this work this is an extraordinary presump-
tion. It is important to note that these crystals are attached to each
other by a region which is an amorphous of crystal materials.

Amorphous phases are vital components of thin films and their
material is analogous to the material of crystals. Due to the fact
that the thickness of the plate is in the scale of nanometer, the
ratio of the surface to the volume of the plate is high. Accordingly,
surface effects cannot be neglected and consequently the funda-
mental equation of the surface must be taken into consideration in
addition to the bulk equation.

2.1. Constitutive relations

From the theory of continuum mechanics, the orthotropic linear
elastic behavior of the bulk can be mathematically described as
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Because of having a plate of nanothickness, the case of plane
stress exists. Thus, in the case of plane stress for an orthotropic
material, Eq. (1) can be written
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where in this equation for simplicity υx and υy are expressed
instead of υxy and υyx, respectively. Consequently for the bulk
material, stiffness matrix can be expressed as
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In order to derive a stiffness matrix for the surface of the plate like
that for the bulk, Eq. (3-2), the linear surface stress–strain model,
which was proposed by Gurtin and Murdoch [1] is considered

ss
αβ ¼ τ0δαβþ2ðμs�τ0Þεαβþðλsþτ0Þεkkδαβ ðα;β¼ 1; 2Þ ð4Þ

where sS
αβ denotes the surface stress, λS and μS are Lame0s constants

of the surface, τ0 is the residual surface stress at zero strain and εαβ

Fig. 1. Multicrystalline microplate with thickness of nanoscale and amorphous of nanowidth.
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