ELSEVIER

Contents lists available at ScienceDirect

Applied Surface Science

journal homepage: www.elsevier.com/locate/apsusc

Full Length Article

Amorphous MoS₂ nanosheets grown on copper@nickel-phosphorous dendritic structures for hydrogen evolution reaction

Byung-Wook Ahn^a, Tae-Yoo Kim^{a,b,c}, Seok-Hun Kim^a, Young-Il Song^{a,**}, Su-Jeong Suh^{a,b,c,*}

- ^a School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 440-746, Republic of Korea
- ^b Smart e-Plating Regional Innovation System, Sungkyunkwan University (SKKU), Suwon 440-746, Republic of Korea
- ^c Advanced Materials and Process Research for IT, Sungkyunkwan University (SKKU), Suwon 440-746, Republic of Korea

ARTICLE INFO

Article history: Received 31 October 2016 Received in revised form 7 June 2017 Accepted 25 June 2017 Available online 27 June 2017

Keywords:
Copper
Nickel
MoS₂
Dendrite
Hydrogen evolution

ABSTRACT

In this study, we introduce highly active, efficient, and Pt-free electrodes (Cu@Ni-P@a-MoS $_2$) fabricated on Ni foils, which have good conductivity and several a-MoS $_2$ edge sites for the hydrogen evolution reaction (HER). A porous Cu dendritic structure on Ni foil was made by electro-plating utilizing hydrogen bubbles, and a Ni-P film that covered the dendritic structure was made by electro-less plating. Vertically grown a-MoS $_2$ nanosheets were formed on the Cu@Ni-P dendritic structure by thermolysis. The structure has abundant active sites because of its particular structure, which was examined by SEM and TEM. XPS analysis was used to confirm that MoS $_2$ was reduced completely, and the a-MoS $_2$ nanosheet layer was characterized by Raman spectroscopy. Electrochemical experiments demonstrated that the electrode was highly effective for the HER with a low onset potential of 118.5 mV, and a current density of 10 and 100 mA/cm 2 for 186 and 345 mV versus the reversible hydrogen electrode potential (vs RHE), respectively, a small Tafel slope of 60.5 mV/dec, and was stable after 2000 cycles. This study demonstrates that highly porous Cu@Ni-P@a-MoS $_2$ electrodes, possessing a huge surface, are desirable for the HER and these findings will pave the way for a new form of highly efficient electrocatalysts.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

New energy sources are required because of global warming and the worldwide shortage of fossil fuels. Hydrogen is a promising alternative since it can be easily obtained by splitting of water and its supply is inexhaustible. One kilogram of hydrogen can produce about 35,000 kcal when it combines with oxygen, and from an energy viewpoint, this amount is about three times that obtained from butane, propane, gasoline, and kerosene. Unlike other fuels, hydrogen does not create carbon dioxide, which can pollute the air and global warming.

The most efficient candidate for a catalyst for the hydrogen evolution reaction (HER), which is the basic reaction in water splitting, is Pt, but its high cost and scarcity inhibit its application. Thus, earth abundant catalysts such as Ni-alloys and transition

E-mail address: suhsj@skku.edu (S.-J. Suh).

metal dichalcogenides (TMD) which is $MX_2(M=Mo,W/X=S,Se)$ have been explored by researchers.

Strategies to make TMD-based catalysts more active include increasing conductivity with carbon material, exposing the active edge sites, and doping effective metals like Co. In order to achieve better conductivity of TMD-based catalysts, researchers have combined carbon materials such as graphene nanosheets [1-13], amorphous carbon [14,15], and carbon nanotubes (CNTs) [16]. Another method of improving conductivity is by using metallic 1T-MoS₂ instead of semiconducting 2H-MoS₂, but 1T-MoS₂ is unstable with increasing temperature [17-19]. Doping nanoparticles also enhances conductivity by reducing he charge transfer resistance [20-22]. Some groups have synthesized vertical MoS₂ to expose the edge sites, which are more active and efficient for the HER than the basal plane [23,24]. In addition to these methods, double gyroid networks [25], template synthesis [26,27], MoS₂ nanorose [28], defect-engineered MoS₂ [29–31], amorphous MoS₂ [32,33], pH controlled synthesis [34], MoS₂ edge modified by UV-ozone [35], and MoS₂/(Ni foam@Graphene)[36,37] have made the catalyst more active.

Nickel is known as an effective catalyst, but it is unstable in acid. There have been efforts to find reasonable over-potentials

^{*} Corresponding author at: School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 440-746, Republic of Korea

^{**} Corresponding author.

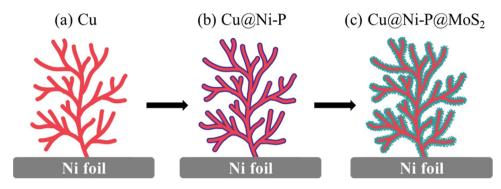
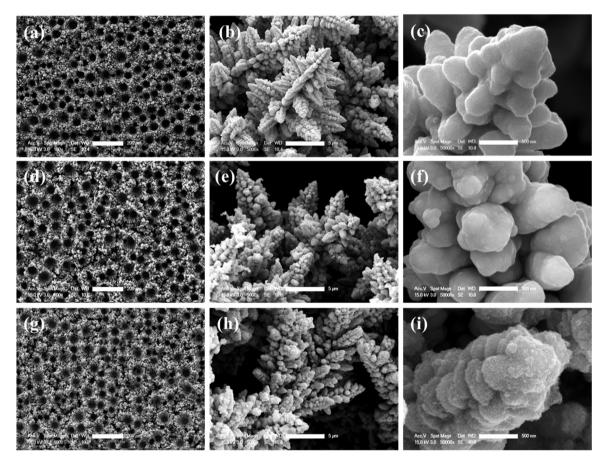



Fig. 1. Fabrication of a-MoS₂ nanosheets grown on Cu@Ni-P dendritic structure. (a) Electrodeposition of Cu dendrite, (b) electroless plating of Ni-P on Cu dendrite, (c) synthesis of a-MoS₂ nanosheets on Cu@Ni-P dendritic structure.

Fig. 2. SEM images of (a–c) Cu dendrites, (d–f) Cu@Ni-P dendrites, and (g–i) a-MoS₂ nanosheets grown on Cu@Ni-P dendrites (Cu@Ni-P@a-MoS₂). Panels (b, e, and h) and (c, f, and i) are high magnification top-view images, respectively. (Scale bar – 200 μm (a, d, g), 5 μm (b, e, h), 500 nm(c, f, i)).

that do not dissolve pure Ni foam in acid [38]. Recently, Fan et al. investigated atomically isolated nickel species anchored on graphitized carbon by starting with Ni based metal-organic framework (MOF). Its performance of $10\,\text{mA/cm}^2$ for $-34\,\text{mV}$ and a Tafel slope of $41\,\text{mV/dec}$ is the best value so far for the HER compared to acid-stable and earth-abundant catalysts [39]. Other efforts to accomplish better performance for Ni-based HER catalyst have been made using Ni₃Se₂ nanoforests [40], high-index faceted Ni₃S₂ nanosheets [41], crystalline-amorphous Ni-NiO core-shell nanosheets [42], nickel phosphide nanoflakes [43], electrodeposited nickel-sulfide films [44], electro-deposited nickel-phosphorous nanoparticles film [45], nickel composites [46], nanostructured nickel sulfides [47], Ni₂P on MoS₂ hybrid [48],

electrodeposited Ni-Co-S nanosheet film [49], and 3D-MoS $_2$ @Ni Core-shell nanosheets [50].

In the present study, we report a unique structure consisting of a-MoS $_2$ nanosheets that have been prepared via electro-deposition, electro-less deposition, and thermolysis and investigate its catalytic properties. Unlike Ni foam, a Cu dendritic structure on Ni foil can achieve a higher surface area since its fabrication can be controlled by increasing or decreasing the deposition time. A Ni-P film is formed by electro-less deposition to cover the structure as Ni-P is more stable than Cu under acid [56]. The a-MoS $_2$ nanosheets were formed vertically on the structure to exploit the large surface area, which provides growth sites for a-MoS $_2$ (Fig. 1). The complete structure showed enhanced HER performance ascribed to the

Download English Version:

https://daneshyari.com/en/article/7836346

Download Persian Version:

https://daneshyari.com/article/7836346

<u>Daneshyari.com</u>