Accepted Manuscript

Title: A novel anti-frictional multiphase layer produced by plasma nitriding of PVD titanium coated ZL205A aluminum alloy

Authors: C. Lu, Y.X. Wang, Y.D. Zhu, J.H. Guo, Y. Wang, H.Y. Fu, Z.B. Chen, M.F. Yan

PII: S0169-4332(17)32731-9

DOI: http://dx.doi.org/10.1016/j.apsusc.2017.09.082

Reference: APSUSC 37161

To appear in: APSUSC

Received date: 22-3-2017 Revised date: 30-8-2017 Accepted date: 11-9-2017

Please cite this article as: C.Lu, Y.X.Wang, Y.D.Zhu, J.H.Guo, Y.Wang, H.Y.Fu, Z.B.Chen, M.F.Yan, A novel anti-frictional multiphase layer produced by plasma nitriding of PVD titanium coated ZL205A aluminum alloy, Applied Surface Sciencehttp://dx.doi.org/10.1016/j.apsusc.2017.09.082

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

A novel anti-frictional multiphase layer produced by plasma nitriding of PVD titanium coated ZL205A aluminum alloy

C. Lu a,b , Y.X. Wang a,b,* , Y.D. Zhu b , J.H. Guo b , Y. Wang b , H.Y. Fu a , Z.B. Chen a , M.F. Yan b,*

^a School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, P.R. China

^b National Key Laboratory for Precision Hot Processing of Metals, School of

Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001,

P.R. China

*Corresponding author: Prof. M.F. Yan

Tel.: +86-451-86418617; fax: +86-451-86413921

E-mail: yanmufu@hit.edu.cn, prsm804@163.com

*Corresponding author: Dr. Y.X. Wang

Tel.: +86-451-86418617; fax: +86-451-86413921

E-mail: sunnywang2013@sina.com, prsm804@163.com

Highlights

- Heat treatment is integrated with the surface modification of Al alloy to improve the comprehensive properties.
- Multiphase layer is fabricated with significantly increased layer depth.
- The surface and core hardness increases from 27HV to 457HV and 65HV respectively.
- Wear rate for multiphase layer decreases 62.4% and 49.28% compared with the substrate and Ti film.

Abstract

Download English Version:

https://daneshyari.com/en/article/7836553

Download Persian Version:

https://daneshyari.com/article/7836553

<u>Daneshyari.com</u>