Accepted Manuscript

Title: Corrosion performance of ZrN/ZrO₂ multilayer coatings deposited on 304 stainless steel using multi-arc ion plating

Authors: Zhefeng Lei, Qingqing Zhang, Xiaodong Zhu, Dayan Ma, Fei Ma, Zhongxiao Song, Yong Qing Fu

PII: S0169-4332(17)31928-1

DOI: http://dx.doi.org/doi:10.1016/j.apsusc.2017.06.273

Reference: APSUSC 36473

To appear in: APSUSC

Received date: 29-3-2017 Revised date: 22-6-2017 Accepted date: 26-6-2017

Please cite this article as: Zhefeng Lei, Qingqing Zhang, Xiaodong Zhu, Dayan Ma, Fei Ma, Zhongxiao Song, Yong Qing Fu, Corrosion performance of ZrN/ZrO2 multilayer coatings deposited on 304 stainless steel using multi-arc ion plating, Applied Surface Sciencehttp://dx.doi.org/10.1016/j.apsusc.2017.06.273

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Corrosion performance of ZrN/ZrO₂ multilayer coatings deposited on 304 stainless steel using multi-arc ion plating

Zhefeng Lei^{1,2}, Qingqing Zhang¹, Xiaodong Zhu¹, Dayan Ma¹, Fei Ma¹, Zhongxiao Song^{1*}, Yong Qing Fu^{2,*}

State Key Laboratory for Mechanical Behavior of Materials, School of Materials
Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
Faculty of Engineering and Environment, Northumbria University, Newcastle upon
Tyne, NE1 8ST, UK

Highlights:

- A optimized process parameters for depositing the zirconia coating were being developed by using multi arc ion plating technique.
- A ZrN/ZrO2 multilayer specimen that possesses symmetrical structure (thickness of each sublayers: 345 nm) and a suitable modulation ratio (1:1) showing excellent toughness and corrosion resistance properties.
- Multilayer structure has integrated the advantages of the sub-layers in toughness and corrosion resistance, and the interfaces should blocked the diffusion path of the cracks during serviced in a

^{*}Corresponding author. Zhongxiao Song, E-mail: ZhongxiaoSong@mail.xjtu.edu.cn; Yong Qing Fu, richard.fu@northumbria.ac.uk

Download English Version:

https://daneshyari.com/en/article/7836607

Download Persian Version:

https://daneshyari.com/article/7836607

Daneshyari.com