Contents lists available at ScienceDirect

Applied Surface Science

journal homepage: www.elsevier.com/locate/apsusc

Theoretical study of the promotional effect of ZrO₂ on In₂O₃ catalyzed methanol synthesis from CO₂ hydrogenation

Applied Surface Science

Minhua Zhang^{a,b}, Maobin Dou^{a,b}, Yingzhe Yu^{a,b,*}

^a Key Laboratory for Green Chemical Technology of Ministry of Education, R&D center for Petrochemical Technology, Tianjin University, Tianjin 300072, PR China

^b Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, PR China

ARTICLE INFO

Article history: Received 10 July 2017 Received in revised form 12 September 2017 Accepted 13 October 2017 Available online 17 October 2017

Keywords: CO₂ hydrogenation Methanol synthesis In₂O₃ ZrO₂ HCOO route DFT

ABSTRACT

Methanol synthesis from CO₂ hydrogenation on the ZrO₂ doped In₂O₃(110) surface (Zr-In₂O₃(110)) with oxygen vacancy has been studied using the density functional theory calculations. The calculated results show that the doped ZrO₂ species prohibits the excessive formation of oxygen vacancies and dissociation of H_2 on In_2O_3 surface slightly, but enhances the adsorption of CO_2 on both perfect and defective Zr-In₂O₃(110) surface. Methanol is formed via the HCOO route. The hydrogenation of CO₂ to HCOO is both energetically and kinetically facile. The HCOO hydrogenates to polydentate H₂CO (p-H₂CO) species with an activation barrier of 0.75 eV. H₃CO is produced from the hydrogenation of monodentate H₂CO (mono-H₂CO), transformation from p-H₂CO with 0.82 eV reaction energy, with no barrier whether there is hydroxyl group between the mono- H_2CO and the neighboring hydride or not. Methanol is the product of H_3CO protonation with 0.75 eV barrier. The dissociation and protonation of CO_2 are both energetically and kinetically prohibited on Zr-In₂O₃(110) surface. The doped ZrO₂ species can further enhance the adsorption of all the intermediates involved in CO₂ hydrogenation to methanol, activate the adsorbed CO_2 and H_2CO , and stabilize the HCOO, H_2CO and H_3CO , especially prohibit the dissociation of H_2CO or the reaction of H_2CO with neighboring hydride to form HCOO and gas phase H_2 . All these effects make the ZrO₂ supported In₂O₃ catalyst exhibit higher activity and selectivity on methanol synthesis from CO₂ hydrogenation.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The efforts to mitigate global climate change through catalytic conversion of CO_2 into methanol, which has been widely used as hydrogen energy carriers and the feedstock for the production of many other chemicals, has attracted considerable interest utilizing heterogeneous metal and metal oxide catalysts [1–4]. The formate (HCOO) route, the reverse water gas shift (RWGS) route, and the hydrocarboxyl (COOH) route are the three reaction pathways which had been proposed for methanol synthesis from CO_2 hydrogenation on the extensively studied Cu-based and Pd-based metal catalysts through both experiments and theory [5–10]. The CO_2 is firstly converted to HCOO which is followed by a consecutive hydrogenation

https://doi.org/10.1016/j.apsusc.2017.10.097 0169-4332/© 2017 Elsevier B.V. All rights reserved. from dioxymethylene (H₂COO), methoxy (H₃CO) to the product methanol (CH₃OH) in the HCOO route.

Compared with the lower methanol selectivity of CO₂ hydrogenation on Cu-based and Pd-based catalysts, the metal oxide catalysts, In₂O₃ catalyst has shown superior catalytic performance with higher methanol selectivity and space time yield [11]. In the methanol [12] and ethanol [13] steam reforming reactions, the In₂O₃ catalysts show near 100% CO₂ selectivity for the suppression of reverse water-gas shift (RWGS) reaction. Bielz et al. found that CO can easily reduce the In₂O₃, while CO₂ can't replenish the oxygen vacancy. Whereas CO₂ evolution via reaction of a CO+H₂O mixture on In₂O₃ above 430 K, only trace amounts of CO are found upon reaction in a CO₂ + H₂ mixture [14]. Sun et al. reported that adsorbed CO₂ on In₂O₃ surface is more highly activated than on the Ga₂O₃ surface, and confirmed that In₂O₃ is a promising catalyst for CO₂ conversion reactions [15]. The experimental results of Sun et al. demonstrated that the temperature and pressure have a significant effect on methanol yield of CO₂ hydrogenation and the products are only CO and methanol, whose yield is higher than that of many other reported catalysts [16]. Martin et al. unveiled

^{*} Corresponding author at: Key Laboratory for Green Chemical Technology of Ministry of Education, R&D center for Petrochemical Technology, Tianjin University, Tianjin 300072, PR China.

E-mail address: yzhyu@tju.edu.cn (Y. Yu).

that the In₂O₃-based catalyst has the performance of high activity, 100% methanol selectivity and remarkable stability under industrially relevant conditions for CO₂ hydrogenation, which strongly contrasts to the benchmark Cu-ZnO-Al₂O₃ catalyst [11]. The theoretical research of CO₂ hydrogenation on In₂O₃ surface by Ye et al. revealed that the oxygen vacancy on In₂O₃ surface is the pivotal site for CO_2 adsorption and activation [17,18]. The perfect In_2O_3 surface firstly reacts with hydrogen to form oxygen vacancy and then adsorbs CO₂ with one of the oxygen atom filling the oxygen vacancy. This is followed by a consecutive hydrogenation of the activated CO₂ to produce methanol according to the HCOO reaction pathway. The experimental results also indicated that the oxygen vacancy is the active site on In₂O₃ catalyst which has higher activity when pre-activated using CO as reducing agent [11]. Besides, the ZrO₂ supported In₂O₃ catalyst shows higher methanol yield than pure In₂O₃ catalyst at the same conditions. The reason, the authors thought, for the promotional effect of ZrO₂ on In₂O₃ catalyst is that ZrO_2 can promote the formation of oxygen vacancy on In_2O_3 surface, which leads to the increasing number of active sites and methanol yield. While it can not be excluded that the oxygen vacancies contained in ZrO₂ itself, which is nonactive, resulted in the increasing of oxygen vacancy. Therefore, more detailed studies are needed to reveal the exact interaction between ZrO₂ support and In₂O₃ catalyst. The experimental [19–21] and theoretical [22–24] studies on Cu/ZrO₂ catalyst for CO₂ hydrogenation indicated that the interaction between Cu and ZrO2 species has a crucial effect on the activity and methanol selectivity. In the interface between Cu and ZrO₂ species, the Zr⁴⁺ is partially reduced to Zr³⁺ (or formation of oxygen vacancy) which is able to bind the key intermediates e.g. CO_2^* , CO^* , HCO^* and H_2CO^* , moderately to facilitate the formation of methanol. The phenomenon that Zr⁴⁺ is partially reduced to Zr^{3+} on ZrO_2 is also observed by Martin [11] et al. at the interface between In₂O₃ and ZrO₂ species. Compared with the interaction between ZrO₂ and Cu species, does the interaction between ZrO₂ and In_2O_3 species just promote the formation of oxygen vacancy on In₂O₃ surface?

In present work, we examine the influence of doped ZrO_2 on the property of In_2O_3 and methanol synthesis from CO_2 hydrogenation using density functional theory (DFT). We first compared the difference between pure In_2O_3 and ZrO_2 -doped In_2O_3 (Zr- In_2O_3) on oxygen vacancy formation and CO_2 and H_2 adsorption, and then mapped out the route for methanol synthesis from CO_2 hydrogenation on Zr- In_2O_3 surface. Finally, we compared the difference of

the adsorption of key intermediates between pure and ZrO₂-doped In₂O₃ surface.

2. Computational details

All the DFT calculation were carried out with the program package Dmol³ in Materials Studio of Accelrys Inc [25,26]. The generalized gradient approximation (GGA) with Perdew-Burke-Ernzerhof functional was utilized to account for the exchange and correlation effects [27]. The basis set was set as double numerical plus polarization (DNP). The basis set superposition error (BSSE) calculation was not performed in this paper since it is very small and can be neglected [28]. To take the relativity effect into account, the density functional semicore pseudopotential (DSPP) method was employed for the In and Zr atoms with spin-unrestricted calculations, and the other atoms were treated with the all electron basis set. A Fermi smearing of 0.001 Ha was adopted to accelerate the convergence and a $2 \times 2 \times 1$ grid was used to generate k-points according to the Monkhorst-Pack method [29]. The convergence criteria for geometry optimization and energy calculation were set as 1.0×10^{-6} Ha, 1.0×10^{-5} Ha, 0.002 Ha Å⁻¹, and 0.005 Å for the tolerance of self-consistent field (SCF), energy, maximum force, and maximum displacement, respectively.

The perfect $\ln_2O_3(110)$ surface was modeled with a $(1 \times \sqrt{2})$ supercell, built from the optimized \ln_2O_3 bulk unit [17,18,30] shown in Fig. 1a. The supercell has a dimension of $14.54 \times 10.28 \times 18.03$ Å. The ZrO₂ doped $\ln_2O_3(110)$ surface was modeled by substituting the two adjacent surface \ln_1 and \ln_2 atoms in the In-O chain as Fig. 1c shows. The oxygen vacancy on the (Zr-) $\ln_2O_3(110)$ surface was created through removing one surface O atom from the perfect (Zr-) $\ln_2O_3(110)$ surface. In all calculations, the bottom two layers were fixed at their equilibrium bulk positions, whereas the top two layers together with the adsorbates were allowed to relax. The adsorption energy of adsorbates, E_q , was defined as given in Eq. (1)

$$E_a = E_{A/S} - E_A - E_S \tag{1}$$

Where A represents absorbate and S represents the perfect or defective $In_2O_3(110)$ surface and $Zr-In_2O_3(110)$ surface slab. $E_{A/S}$, E_A , and E_S represent the total energies of the surface slab with the adsorbates, the isolated molecule (radical), and the clean optimized perfect $Zr-In_2O_3(110)$ surface and the defective $Zr-In_2O_3(110)$ sur-

Fig. 1. (a) The optimized structure of the $In_2O_3(110)$ surface, side view (upper) and top view (lower). (b) The optimized structure before (upper) and after (lower) the creation of O_{v3} vacancy on $In_2O_3(110)$ surface. (c) Optimized structure of the Zr- $In_2O_3(110)$ surface. (d) The optimized structure before and after the creation of O_{v3} vacancy on Zr- $In_2O_3(110)$ surface. Red, O atoms; brown, In atoms; Cyan, Zr atoms. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Download English Version:

https://daneshyari.com/en/article/7836628

Download Persian Version:

https://daneshyari.com/article/7836628

Daneshyari.com