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a b s t r a c t

We compute vibrational energy levels using Gaussian basis functions whose centers are in slabs that
include the lower-dimensional hyperplanes on which the Multimode approximation to the potential is
based. We use more potential points than basis functions to increase the accuracy. The number of
Gaussian basis functions is smaller than the number required using the best existing methods. For
formaldehyde, the first 50/100 levels we compute, using 30,000 Gaussians and 120,000 points, in 4D-like
slabs, differ from numerically exact levels by 0.3/0.6 cm�1 (mean absolute error). With 3D-like slabs, the
mae for the first 50/100 levels is 0.17/0.47 cm�1 with 30,000 basis functions and 0.95/2.06 cm�1 with
20,000 basis functions. Although we use a multimode-like idea to select Gaussian centers, we use a single
point set and there is no need to write the potential in multimode form and no need to neglect high-order
terms.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

When coupling and anharmonicity are important, it is common
to a compute vibrational spectrum by representing vibrational
wavefunctions as linear combinations of basis functions and solv-
ing a matrix eigenvalue problem [1–5]. Although bases of products
of multi-dimensional basis functions have advantages [6–8], it is
common to use basis functions that are products of univariate
functions. The most popular univariate functions are polynomial
based. The multiconfiguration time-dependent Hartree method
uses optimized 1D functions [9]. Persistent efforts have been made
to find effective ways of using localized 1D Gaussian-type basis
functions [10–16]. They have the advantage that it ought to be pos-
sible to use only products of 1D Gaussians whose centers are in a
small region of configuration (or phase) space. Clearly, it is better
not to use a basis whose functions have amplitude in regions of
configuration (phase) space in which wavefunctions (their Wigner
transforms [17]) are tiny. In this paper, we use Gaussian basis func-
tions, however, they could be replaced with other localized or even
non-localized functions [18,19].

To use Gaussian basis methods, one must confront three prob-
lems: 1) how to choose which Gaussians to include in the basis;

2) how to compute potential energy surface (PES) matrix elements;
3) how to compute matrix elements of the kinetic energy operator
(KEO). In this paper, we present a new solution to 1) and use pre-
viously published ideas for 2) and 3) [20]. For multi-dimensional
problems, there are two common approaches for choosing which
products of 1D Gaussians to use. Some authors use more products
centered at points at which the potential is low [16]. This is most
easily done by choosing centers from a distribution function
peaked at the minimum of the potential. Oher authors begin, at
least conceptually, with a regular (often equally spaced) multidi-
mensional grid of multidimensional Gaussians and put only those
into the basis whose centers are in or close to the classical region
[10,12,14,21]. There are also attempts to numerically minimize a
trace to optimize the positions of the Gaussians [15].

We propose a new idea for selecting the multidimensional
Gaussian centers. It is well established that if a PES is written as
a sum of terms that depend on a single coordinate, terms that
depend on two coordinates, terms that depend on three coordi-
nates etc, then terms that depend on more coordinates are less
important than terms that depend on fewer coordinates [22]. A
PES written in this way is often said to be in multimode (MM) form
or a high-dimensional model representation (HDMR). Bowman and
co-workers have developed a computer program [23,24] for com-
puting vibrational spectra that exploits the diminishing impor-
tance of higher order terms by retaining only basis functions that
are coupled by lower order terms [22]. The program uses a set of
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low-dimensional grids to evaluate integrals. We exploit the dimin-
ishing importance by using it to design a (single) grid that is used
to compute matrix elements and to choose multidimensional
Gaussian centers. It has recently been demonstrated that it is pos-

sible to use product basis functions, /ð1Þ
n1 ðx1Þ/ð2Þ

n2 ðx2Þ . . ./ðDÞ
nD ðxDÞ and

the restriction
P
c
GcðncÞ 6 H, where H is a convergence parameter,

to construct a Smolyak sparse grid. The functions GcðncÞ are chosen
so that most of the points on the grid are those required to com-
pute matrix elements of the most important terms in the PES
[25–27]. However, in these papers, the 1D basis functions are not
Gaussians, and the grid is built from 1D grids using the Smolyak
recipe, which is not the case here.

Problems 2) and 3) are dealt with using ideas from Ref. [20]. The
approach we use can be thought of either as a rectangular colloca-
tion method or as a method using a quadrature with constant
weights. In this paper, we denote it the space-fixed Gaussian basis
(SFGB) method. We need only values of the potential at the collo-
cation/quadrature points. There is no need for a SOP (sum-of-
products) PES. There is no need to represent the PES in the MM
form and neglect higher order terms. We are exploiting the
smallness of higher order terms without neglecting them. We
use a space-fixed KEO and thereby obviate the need to derive
analytically [28] or compute numerically [29,30] a KEO in terms
of the vibrational coordinates on which the basis functions depend.
It is possible to operate with a space-fixed (SF) Cartesian KEO on
basis functions that are the functions of internal curvilinear
coordinates [20].

2. Methods

The new ideas for choosing Gaussian centers and collocation/
quadrature points were tested by computing vibrational energy
levels of formaldehyde. We used the PES of Ref. [31]. The spectrum
computed on it agrees well with the experimental spectrum
[20,32]. We used bond coordinates x ¼ ðCO;CH1;CH2;\OCH1;

\OCH2;\H1COH2Þ, where \H1COH2 stands for the dihedral angle
between the OCH planes. The basis functions are functions of these
coordinates and the PES is evaluated at a set of points in the bond
coordinates.

The vibrational spectrum is computed using the space-fixed
Gaussian basis method of Ref. [20]. Wavefunctions are expanded
in a basis

wkðxÞ ¼
XN
n¼1

cnkgnðxÞ ð1Þ

where gnðxÞ is a basis function (in this paper we use Gaussians). If
the coefficients were determined so that the Schrödinger equation
(SE) is satisfied at a set of pointsfxmg;m ¼ 1; . . . ;M, they, and the
energies would be obtained by solving the matrix equation

~Mc0k ¼ EkSc0k ð2Þ

In our case, M > N, and the ~M matrix in Eq. (2) is rectangular. In
Eq. (2), Smn ¼ gnðxmÞ, ~Mmn ¼ TgnðxmÞ þ VðxmÞgnðxmÞ, and c0k is a vec-
tor of coefficients. T is the KEO. This rectangular matrix equation is
solved by multiplying on the left with ST to obtain the square gen-
eralized eigenproblem [33–35]

STMck ¼ EkS
TSck ð3Þ

where ck � c0k. This is not equivalent to using quadrature to com-
pute potential matrix elements and exact kinetic matrix elements
because the (non-symmetric) kinetic matrix is also obtained by
doing quadrature. We use

gnðxÞ ¼
YD
d¼1

2r2
dp

� ��1
2e

�
xd�x0;n

dð Þ2
2r2

d ð4Þ

where D = 6 is the number of dimensions. rd � r0 � jðdÞ; where
jðdÞ is proportional to the range of coordinate d, and r0 is chosen
to minimize the difference with the reference (variational) spec-
trum. The space-fixed KEO

TSF ¼ �
X3Natoms

k¼1

1
2mk

@2

@X2
k

ð5Þ

where X are spaced-fixed Cartesian coordinates, is applied to gnðxÞ
by using gnðxðXÞÞ. The method is implemented in Matlab [36]. See
Ref. [20] for details.

To make a set of potential points fxmg, we choose points within
specific ranges from a pseudo-random six-dimensional Sobol
sequence [37] and accept points if

Vmax � VðxÞ þ D
Vmax þ D

> rand ð6Þ

where rand is a (uniformly distributed) random number in [0, 1]. We
use Vmax ¼ 17;000 cm�1 and D ¼ 500 cm�1. The coordinate ranges
are xmin ¼ ð1:03; 0:84; 0:84;83;83;105Þ, xmax ¼ ð1:50;1:69;1:69;
162;162;255Þ, where bond lengths are in Å and angles in degrees.
We have shown that this kind of point selection results in accurate
vibrational spectra [20]. The constraints of Eq. (6) and coordinate
ranges define the full-dimensional, 6D point set.

We also form point sets, denoted MM(d), by starting with a six-
dimensional Sobol sequence within the same coordinate ranges as
above, and accepting only points in the reference set that satisfy, in
addition to Eq. (6), the constraint

XD
i¼1

H abs
xi � xieq

ximax � ximin

 !
� s

 !
6 d ð7Þ

where H(x) is the Heaviside step function. By imposing Eq. (7), we
select only points in ‘‘slabs” in the configuration space containing
hypersurfaces corresponding to displacements of only d 6 D coordi-
nates from equilibrium values. In Eq. (7), s determines the thickness
of the slabs. A standard MM calculation uses not one grid but many
[22]. The grid that is the union of the individual standard MM grids
is similar to the grid obtained, for a particular value of d, by putting
s = 0. In the standard MM case, it is necessary only to use quadra-
ture in a reduced dimensional space. In the approach of this paper,
Eq. (3) is equivalent to computing full-dimensional integrals. For
this reason it is necessary to use a non-zero s << 1. In summary,
we make a set of points that is similar to the union of the individual
grids used in the standard MM method. The advantage of MM(d) is
that it includes only points in the small region of configuration
space necessary for computing integrals of an MM representation
of the PES that is truncated at dth order. We use MM(d) even though
we do not build an MM approximation to the potential. We are
starting from a point set (see Eq. (6)) that is similar to that of Gar-
ashchuk and Light and discarding points that are in regions of con-
figuration space we deem unimportant [16].

We computed the lowest 100 vibrational levels. For a given cal-
culation, the widths of all basis functions are the same and chosen
as described in Ref. [20]. Different widths are used for different d.
SFGB spectra are computed both using a reference point set (Eq.
(6)) and using MM(d), d = 2, . . ., 5 point sets extracted from the ref-
erence set. For all calculations, the Gaussian centers, x0;nd in Eq. (4),
are the first N points from the point set unless stated otherwise.
The reference SFGB calculation uses M = 120,000 points and N =
40,000 Gaussian basis functions. The reference points depend on
the random numbers in Eq. (6). Ten sets of reference points were
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