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a b s t r a c t

The coupled exciton-vibrational dynamics of a three-site model of the FMO complex is investigated using
the Multi-layer Multi-configuration Time-dependent Hartree (ML-MCTDH) approach. Emphasis is put on
the effect of the spectral density on the exciton state populations as well as on the vibrational and vibro-
nic non-equilibrium excitations. Models which use either a single or site-specific spectral densities are
contrasted to a spectral density adapted from experiment. For the transfer efficiency, the total integrated
Huang-Rhys factor is found to be more important than details of the spectral distributions. However, the
latter are relevant for the obtained non-equilibrium vibrational and vibronic distributions and thus influ-
ence the actual pattern of population relaxation.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

The spectral density (SD) is central to the theory of dissipative
quantum dynamics [1]. It describes the coupling of the relevant
system to particular modes of the environmental bath. There is a
number of model SDs (Ohmic, Debye-Drude or Multi-Mode Brow-
nian Oscillator) [2–4], whose general influence on the dynamics of
model systems has been extensively studied. The actual definition
of the SD is linked to an assumption concerning the system-bath
coupling. For vibrational dynamics, the Caldeira-Leggett model,
i.e. a bilinear form in system and bath coordinates, is typically
assumed, although its applicability in general has recently been
challenged [5]. For problems involving an electronic excitation
coupled to nuclear dynamics, the Huang-Rhys (HR) model is com-
monly applied. It assumes that vibrational degrees of freedom
(DOFs) are described in harmonic approximation with the equilib-
rium positions of the oscillators being linearly shifted upon elec-
tronic excitation [4]. Recently, SDs beyond simple models have
attracted considerable attention in the context of Frenkel exciton
dynamics in photosynthetic light-harvesting complexes. Here, the

electronic excitation of the chlorophyll molecules is coupled to
both, intramolecular and protein vibrations. While the SD for the
latter is essentially structureless and often well described bymodel
functions, intramolecular vibrations give rise to distinct features in
the SD, whose spectral positions and weights might be relevant for
the exciton dynamics [6].

Under the assumptions of the HR model, SDs can in principle be
reconstructed from spectroscopic data such as site-selective fluo-
rescence [7]. For the widely discussed Fenna-Matthews-Olson
(FMO) complex of cyanobacteria, Wendling et al. [8] have deter-
mined a SD by focussing on the lowest energetic bacteriochloro-
phyll a (BChl a) pigment at 4 K. Although their assumption that
this particular BChl a molecule is electronically decoupled from
the other BChl a molecules of the complex has been critically dis-
cussed [9], the Wendling SD has become a standard for the discus-
sion of FMO dynamics [10–13]. In Ref. [10] the low-frequency
phonon part had been found to be rather similar to that of the
B877 monomer complex studied in Ref. [14]. However, the Wend-
ling SD, in contrast to the bare phonon wing, contains structured
features due to discrete vibrations. In Ref. [10] this effect was mod-
eled by adding an isolated delta-like peak to the SD. Such sharp
features are a notorious problem for density matrix approaches
to the dynamics. It can be circumvented by including the related
vibrational mode into the relevant system [15,16]. For the case of
the FMO complex, this approach has been used to perform path
integral [17] and Quantum Master equation [18] simulations.

The computational determination of SDs for specific pigment-
protein complexes usually employs sampling of the fluctuations
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of local electronic energy gaps using ground state equilibrium clas-
sical molecular dynamics. In a pioneering work, Schulten and
coworkers have calculated the SD for BChl a in the light-harvesting
antenna LH2 of purple bacteria [19]. Due to the limited trajectory
length only the high-frequency part of the SD was accessible. Con-
cerning the FMO complex there are essentially as many different
SDs as there are published papers on this topic, although most of
them agree in gross features. For instance, Kleinekathöfer and
coworkers have determined site-specific FMO SDs using the
semiempirical ZINDO/S approach to calculate electronic excitation
energies [20,21]. A comparison of the effect of different force fields
and electronic structure methods has been provided in Ref. [22].
Further, the use of the classical approximation has been scrutinized
in Ref. [23]. A different strategy has been followed by Renger et al.,
who used the shifted harmonic oscillator model directly by
employing a normal mode analysis of the pigment-protein com-
plex [24]. The latest SD comes from the group of Coker et al.
[25,26] and will also be used in the present work. The Coker SD
combines both ideas mentioned above, i.e. the phonon wing is
modeled using general gap correlation functions, whereas for the
intramolecular vibrations a harmonic approximation is assumed
[25,26].

In view of the many different FMO SDs, the question arises
whether the details really matter for the dynamics of excitation
energy transfer. In other words, are there any vibrational mode
specific effects in a system as complicated as the FMO complex?
Previously, we have shown that, in principle, an answer can be pro-
vided based on the propagation of the full exciton-vibrational
wavepacket [12,13], which becomes possible by using the ML-
MCTDH approach [27–33]. Given an exciton Hamiltonian and a
discretized SD, ML-MCTDH provides a numerical solution to the
time-dependent Schrödinger equation, whose convergence to a
desired accuracy can be monitored.

In the present contribution, ML-MCTDH is applied to FMO
dynamics using different SDs, i.e. the Wendling [8] and the Coker
SD [26]. This will allow us to highlight the sensitivity of the
dynamics with respect to the details of the SD model. The paper
starts with a brief outline of Frenkel exciton theory and ML-
MCTDH in Section 2. Here, we will also introduce the different
SD models. Results of numerical simulations are discussed in Sec-
tion 3 and a summary is provided in Section 4.

2. Theoretical methods

2.1. Exciton-vibrational Hamiltonian

The Frenkel exciton Hamiltonian describes an aggregate with
Naggsites (site index m), each site having the excitation energy
Em, and different sites being coupled by the Coulomb interaction
Jmn[1]

Hex ¼
XNagg

m;n¼1

ðdmnEm þ JmnÞjmihnj: ð1Þ

Here, we used the Frenkel one-exciton states
jmi ¼ jemi

Q
n–mjgni, which are defined in terms of the local elec-

tronic ground, jgmi, and excited, jemi, states. For the site energies
and Coulomb interactions, we will use the FMO values reported
by Moix et al. [34]. They are based on a combination of site ener-
gies obtained from quantum chemical/electrostatic calculations
[35] and Coulomb couplings described within the dipole–dipole
approximation. Previously, it has been shown that the dynamics
is essentially confined to the sites 1 to 3 [13,34]. This justifies
the restriction to these three sites in the following. Thus the Hamil-
tonian matrix is given by (in units of cm�1, off-set is 12195 cm�1)
[34]:

Hex ¼
310 �98 6
�98 230 30
6 30 0

0
B@

1
CA: ð2Þ

Note that the labeling of the sites follows the structure of the
Hamiltonian matrix, e.g., site m ¼ 3 is the energetically lowest site,
which is connected to the cytoplasmic membrane containing the
reaction center complex.

Diagonalization of this matrix yields the (in the following called
adiabatic) one-exciton eigenstates jai ¼PmcmðaÞjmi with energies
Ea. The related transition energies are given in Fig. 1. The decompo-
sitions into the local (in the following called diabatic) states jmi are
as follows (in order of decreasing energy): cð3Þ ¼ ð�0:83;0:56;
0:03Þ; cð2Þ ¼ ð0:56;0:81;0:16Þ, and cð1Þ ¼ ð�0:06;�0:15;0:99Þ.

The local vibrations at site m are described in harmonic approx-
imation by the set of dimensionless normal mode coordinates
fQm;ng with frequencies fxm;ng, i.e. the vibrational Hamiltonian
reads

Hvib ¼
X
m

X
n2m

hm;n; ð3Þ

with the harmonic oscillator Hamiltonian

hm;n ¼
�hxm;n

2
� @2

@Q2
m;n

þ Q2
m;n

 !
: ð4Þ

EVC is accounted for within the linearly shifted oscillator model,
i.e.

Hex�vib ¼
X
m

X
n2m

�hxm;n

ffiffiffiffiffiffiffiffiffiffiffi
2Sm;n

q
Qm;njmihmj: ð5Þ

The coupling of a particular mode to the electronic transition is
characterized by the Huang-Rhys (HR) factor Sm;n.

Frequencies and HR factors can be obtained from the SD, JmðxÞ,
of the monomeric BChl a molecule [1]

JmðxÞ ¼ A
X
n2m

Sm;ndðx�xm;nÞ; ð6Þ

where A is a constant that will be used to adjust the total HR factor
for site m for a finite discretization according to

Stot ¼ A�1 R dxJmðxÞ ¼Pn2mSm;n.
Since the reported SDs differ considerably, we have used the

experimentally determined SD of Wendling et al. [8] in our previ-
ous investigation (cf. Fig. 1) [12,13]. In the present study, the
Wendling SD will be taken as a reference and will be called model
I. Specifically, it is discretized into 74 modes within the interval
½2 : 300� cm�1 as shown in Fig. 1. The amplitudes of the individual
HR factors have been adjusted homogeneously via the constant A
such as to preserve the total HR factor, Stot ¼ 0:42, upon
summation.

The results of model I will be compared to those obtained using
the site-specific Coker SDs of Ref. [26], called model II. In Fig. 1
these SDs are decomposed into a phonon wing and a discrete
intramolecular part. The former has been fitted to a log-normal dis-
tribution, i.e. (Sph ¼ ð0:33;0:68;0:37Þ for sites ð1;2;3Þ and
r ¼ 0:7;xc ¼ 38 cm�1)

JphðxÞ ¼ pSphxffiffiffiffiffiffiffi
2p

p
r

exp � ½lnðx=xcÞ�2
2r2

( )
: ð7Þ

Note that in Ref. [25] a different definition of the SD had been
used. The present Jph are chosen such as to give the same reorgan-
isation energies. The Jph have been discretized in the interval
½2 : 160� cm�1 into 32 modes. The intramolecular part was taken
directly from Ref. [26]. This results in a total of 81 modes for each
site. In the Coker model II the total HR factors are site-specific, i.e.
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