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a b s t r a c t

The Ludwig-Soret effect, also known as thermal diffusion, refers to the separation of gas, liquid, or solid
mixtures in a temperature gradient. The motion of the components of the mixture is governed by a non-
linear, partial differential equation for the density fractions. Here solutions to the nonlinear differential
equation for a binary mixture are discussed for an externally imposed, exponential temperature field.
The equation of motion for the separation without the effects of mass diffusion is reduced to a
Hamiltonian pair from which spatial distributions of the components of the mixture are found.
Analytical calculations with boundary effects included show shock formation. The results of numerical
calculations of the equation of motion that include both thermal and mass diffusion are given.

� 2018 Elsevier B.V. All rights reserved.

1. Introduction

Thermal diffusion, also known as the Soret effect or Ludwig-
Soret effect is a process whereby mixtures separate in response
to an imposed temperature gradient [1,2]. The separation is known
to take place in gases, liquids, and even solids, but is typically
small. When the temperature distribution in space is specified
and the contribution of the Dufour effect to the dynamics of ther-
mal diffusion is ignored [3], the equation governing the time
dependence of one of the normalized density fractions c in a binary
mixture is given by

@c
@t

¼ r � ½cð1� cÞDTrT� þ Dr2c; ð1Þ

where DT is the thermal diffusion coefficient, D is the mass diffusion
coefficient, T is the temperature, and t is the time [3]. The solution
to this equation for a sinusoidal temperature gradient, as has been
discussed in Ref. [4–6], shows that the underlying motion of c for a
positive thermal diffusion coefficient is accumulation at regions
where there are temperature minima followed by formation of a
pair of counter-propagating shocks whose fronts are smoothed by
the effects of mass diffusion. The extent to which the shocks are
qualitatively discernible was shown to be dependent on the relative
magnitudes of DT and D. Further investigation of the Ludwig-Soret
effect for a linear temperature field in one dimension [7,8] showed
that Eq. (1) can be reduced to the heat diffusion equation through
use of the Hopf-Cole transformation, thus giving an exact, closed
form solution for the motion of the components of a binary mixture.

This paper shows in the first section, Analytical Solutions with
Mass Diffusion Neglected, that the Ludwig-Soret equation can be
reduced to a Hamiltonian pair and that the motion of the compo-
nents can be determined away from the origin. As well, the effects
of a boundary at the origin are treated showing formation of shock
waves. The section entitled Numerical Calculation gives solutions
to the nonlinear Ludwig-Soret equation using the discontinuous
Galerkin finite element method with mass diffusion included.
The time evolution of density fractions which are initially Gaussian
in space, distant from the origin is given as well.

2. Analytical solutions with mass diffusion neglected

Consider thermal diffusion acting on an initially uniform den-
sity fraction distribution in space having a value c0 in an exponen-
tial temperature field that extends from the origin along the
positive z axis according to T ¼ T0e��az, where �a is a spatial decay
constant and T0 is a temperature. The temperature T can be written

in terms of a dimensionless temperature bT ¼ e�f, where f is a
dimensionless coordinate defined as f ¼ �az. Eq. (1) for the Lud-
wig-Soret effect in one dimension for f > 0 thus reduces to

@c
@s

¼ �a @

@f
½cð1� cÞe�f� þ @2c

@f2
; ð2Þ

where the thermal diffusion factor a is given as a ¼ STT0 (ST ¼ DT=D
is the Soret coefficient) and a dimensionless time has been defined
as s ¼ D�a2t.

To determine the underlying motion of c, Eq. (2) can be studied
without the effects of mass diffusion which corresponds to the sec-
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ond spatial derivative of c, giving the equation of motion for f > 0
as

@c
@s

¼ �a @

@f
½cð1� cÞe�f�; ð3Þ

which, by introducing the flux function

f ðc; fÞ ¼ acð1� cÞe�f; ð4Þ
gives

@c
@s

¼ � @f
@c

@c
@f

� @f
@f

: ð5Þ

Eq. (5) can be solved by regarding c and f as two independent vari-
ables, that is, c ¼ cðfðsÞ; sÞ and f ¼ fðsÞ. The total differential of c can
be written as

@c
@s

¼ � @c
@f

df
ds

þ dc
ds

: ð6Þ

Equating various terms in Eqs. (5) and (6) gives the Hamiltonian
system,

df
ds

¼ @f ðc; fÞ
@c

dc
ds

¼� @f ðc; fÞ
@f

; ð7Þ

where ðf; cÞ constitutes a pair of canonical coordinates and f acts as
the Hamiltonian. For the present problem, Eq. (7) gives the equa-
tions of motion for the position f and the density fraction c as

df
ds

¼að1� 2cÞe�f

dc
ds

¼acð1� cÞe�f: ð8Þ

A Hamiltonian field plot for f is given in Fig. 1. The slopes of the
vectors dc=dfcan be found by division of the second of Eq. (8) by
the first giving

dc
df

¼ cð1� cÞ
1� 2c

; ð9Þ

with the differential directions of the components in time of each
vector determined by multiplication of Eq. (8) by ds. For any point
in the ðf; cÞ plane, the Hamiltonian field plot shows its direction in
time, giving an indication of the time development of any initial dis-
tribution of c in space.

The total differential of the flux is df ¼ �að2c � 1Þ expð�fÞdc�
acð1� cÞ expð�fÞdf, which, when combined with Eq. (9), shows
that f is a constant of the motion along the lines defined by
Eq. (9), as expected for a Hamiltonian system since f does not
explicitly depend on s. Hence, any point in the ðf; cÞ plane
moves in time from an initial point ðf0; c0Þ to a new point ðf; cÞ as
governed by

acð1� cÞe�f ¼ ac0ð1� c0Þe�f0 : ð10Þ
By solving Eq. (10) for a point originally at ðf0; c0Þ, the new values of
c and f can be found to obey the following expression

f ¼ � ln
c0ð1� c0Þe�f0

cð1� cÞ
� �

: ð11Þ

As the flux function is a constant of the motion and is identical
to the right hand side of the second of Eq. (8), it follows that
c � c0 ¼ ks; where k is the value of f at some initial point and time.
Hence, for any initial point ðf0; c0Þ, after a time s the new density
fraction and coordinate are given by

cðsÞ ¼c0 þ asb

fðsÞ ¼ � ln
b

½c0 þ asb�½1� ðc0 þ asbÞ
� �

; ð12Þ

where b ¼ c0ð1� c0Þe�f0 . By eliminating b from Eq. (12), c can be
expressed as a function of s and f in the form

cðf; sÞ ¼
�ef þ asþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2f þ 4asðc0 � 1

2Þef þ a2s2
q

2as
: ð13Þ

A density fraction distribution versus coordinate at a single value of
s calculated from Eq. (13) is shown in Fig. 2 (dotted curve). Note
that the area beneath c at s ¼ 5 is larger than the area of the initial

Fig. 1. Hamiltonian field plot {@f=@c;�@f=@f} of c versus f for the flux function f in
Eq. (4) calculated with a ¼ 10. For negative values of a, the directions of arrows are
reversed.

Fig. 2. Density fraction c versus coordinate f for an initially uniform density
distribution with c0 ¼ 0:2 (flat line). The dotted curve shows the direct calculation
result from Eq. (13) with a ¼ 10 at s ¼ 5. The dashed curve shows shows c with
shock formation originating from the effect of the boundary. Inset: Shock front
position fsh (dashed curve) and shock speed v sh (solid curve) versus time s with
a ¼ 10.
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