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a b s t r a c t

The paper discuses a method for obtaining the equilibrium configurations of a Reissner shear-deformable
cantilever beam subject to a tip follower force. Along with the classical follower force, where the angle
between the force and normal to the beam cross-section remains constant, the tip rotational load is also
discussed. In the latter case there are multiple possible equilibrium configurations of the beam for a
given force. The theory is enhanced with numerous numerical examples and examples of deformed
beams presented in graphic form.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The problem of the deflection of a cantilever Euler type elastic
beam under tip follower force, which falls into the class of non-
conservative problems in elasticity, was first considered as a
question of the stability of such a load in the Euler sense [1–3].
In 1980 numerous authors discussed the follower load in the
context of development of finite element methods. Among them
we mention Argyris and Symeonidis [4] and Alliney and Tralli [5].
It seems that the first discussion of large deflection of the
cantilever beam under tip follower force was given by Saje and
Srpčič [6]. As a basis they use large deformation beam theory. They
consider several load cases and solve the governing two-point
boundary value problem with the finite-differences method. The
large deflection of a cantilever was considered by Rao and Rao
[7,8] as a special case of end rotational load. In the first paper they
as the solution of the problem obtain an elliptic integral which
gives explicit expression of the load factor as a function of tip angle
and the rotation factor. Accordingly, they use the tip angle as a
given parameter and then they calculate load parameter. In the
second paper they as input data use load parameter and then they
calculate tip angle by use the Runge–Kutta integration and the
shooting method. The problem of follower load is also discussed
briefly by Antman [9], who, with very general constitutive
assumptions, considers only the trivial solutions of the problem.

In the recent decade, the problem has attracted new attention.
Shkutin [10] consider shear deformable beam and solve the govern-
ing sixth-order ordinary differential equations numerically by the
shooting method. Zakharov et al. [11] give and analytical solution
the problem in terms of Jacobi elliptical functions. Shvartsman [12]
considered a large deflection problem for a spring-hinged Euler type
beam. Instead of using the shooting method to solve the governing
boundary value problem, he, by introducing a new angle variable
[9], reduced the problem to an initial value problem which allows
direct numerical integration. He then calculates the tip coordinates
of a deflected beam by Simpson integration. The group of Indian
researchers consider the large deflection of cantilever under tip
rotational force [13] and pure follower force [14]. They, by following
Rao and Rao [7] analytically express load factor as a function of tip
angle and rotational factor and then by numerical integration obtain
various shapes of deformed beams. They practically found that—
except for the pure follower force—there are multiple possible
equilibrium configurations of beam. We note that their method
does not allow calculation of the equilibrium configurations for a
given force, but only for the given tip angle. Nallathambi et al. [15]
numerically solved the problem for a cantilever by changing the
direction of integration from beam root to beam tip into integration
from tip to root. By this, they transformed the boundary value
problem to an initial value problem and in contrast to [12] they for
determination of free end slope by using shooting method. Recently
Kimiaeifar et al. [16] and Wang et al. [17] solved the problem using
the analytical homotopy method.

To that we added that curved cantilever under follower force
which was considered by Srpcic and Saje [18], Nallathamb et al. [15]

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/ijmecsci

International Journal of Mechanical Sciences

0020-7403/$ - see front matter & 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.ijmecsci.2013.08.006

n Corresponding author.
E-mail address: milan.batista@fpp.edu

International Journal of Mechanical Sciences 75 (2013) 388–395

www.sciencedirect.com/science/journal/00207403
www.elsevier.com/locate/ijmecsci
http://dx.doi.org/10.1016/j.ijmecsci.2013.08.006
http://dx.doi.org/10.1016/j.ijmecsci.2013.08.006
http://dx.doi.org/10.1016/j.ijmecsci.2013.08.006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijmecsci.2013.08.006&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijmecsci.2013.08.006&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijmecsci.2013.08.006&domain=pdf
mailto:milan.batista@fpp.edu
http://dx.doi.org/10.1016/j.ijmecsci.2013.08.006


and Shvartsman [19]. The later author also consider cantilever beam
under two follower forces [20].Wealsonote thatmultiple equilibrium
configurations for a Euler cantilever beamunder dead loadwas given
by Navaee [21] and for sheare-deformable beam preset author [22].

From this review, we can conclude that the problem of determi-
nation of equilibrium shapes of a tip follower loaded beam is
discussed by most authors only for a Euler type beam. In the present
article we extend the analysis of the problem to Reissner shear-
deformable beams. First, we formulate the problem and then by the
standard method we reduce it to a solution of an ordinary initial
value problem. After several simple analytical solutions of the
governing equations, we discuss in some detail the possible range
of tip angle subject to constitutive restriction and thenwe add a few
numerical examples. We then proceed with a discussion of possible
equilibrium configurations of a cantilever beam subject to rotational
tip load in some detail. We end the paper with our conclusions.

2. Basic equations

The geometry and load of the beam are shown in Fig. 1. For a
description of the deformed state of an initially straight beam we
use Reissner equations [23]

dX
ds

¼ ð1þεÞ cos ϕ�γ sin ϕ

dY
ds

¼ ð1þεÞ sin ϕþγ cos ϕ

dϕ
ds

¼ κ ð1Þ

In these equations X, Y are coordinates of the deformed beam
base curve, ϕ is the tangent angle to the beam, and ε, γ, and κ are
successively axial, transverse and bending strain. The parameter s
is the length parameter of an undeformed beam measured from
beam root to beam tip. For the tip loaded beam the internal force
is constant along beam [9]. The axial component N and shear
component Q of internal force may be therefore expressed as

N¼�F cos ðϕ�ϕ1þαÞ Q ¼ F sin ðϕ�ϕ1þαÞ ð2Þ
where F40 and αA 0;π½ � are respectively applied force and its
direction, and ϕ1 is the tip angle

ϕ1 �ϕð1Þ ð3Þ
The moment equilibrium equation ðdM=dsÞ ¼ γN� 1þεð ÞQ may be
by using expressions for components of internal force (2) written
in the form

dM
ds

¼�F½ð1þεÞ sin ðϕ�ϕ1þαÞþγ cos ðϕ�ϕ1þαÞ� ð4Þ

We assume that the forces and moment are related to defor-
mations by the following constitutive equations

N¼ EAε Q ¼ GAsγ M¼ EIκ ð5Þ
where EA, GAs and EI are positive constants which represent
respectively tensile, shear and bending stiffness of the beam.

Boundary conditions for the problem are following

Xð0Þ ¼ Yð0Þ ¼ 0 ð6Þ

ϕð0Þ ¼ 0 κð1Þ ¼ 0 ð7Þ

Finally, we obtain the length of the deformed beam by
integration of the following equation

dS
ds

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dX
ds

� �2

þ dY
ds

� �2
s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þεÞ2þγ2

q
Sð0Þ ¼ 0 0rsrL ð8Þ

From this, we see that the beam will not stretch to zero at any
point for any γ if

1þε40 ð9Þ

2.1. Non-dimensional form of equations

To reduce the number of parameters in the governing equations
we first normalize coordinates to beam length L. Next we introduce
the load parameter ω and two non-dimensional material constants:
generalized slenderness ratio λ and parameter ν as follows [22]

ω2 � FL2

EI
1

λ2
� EI

L2
1
EA

þ 1
GAs

� �
ν� GAs�EA

GAsþEA
A ½�1;1� ð10Þ

Note that for GAs⪡EA we have ν-�1 and the beam becomes
shear stiff, while for GAs⪢EA we have ν-1 and the beam becomes
tensile stiff. We obtain Euler elastica for 1=λ2 ¼ 0. Now, by
following Antman [9] and Shvartsman [12] we, in order to remove
ϕ1 dependence from the moment Eq. (4), define new angle φ by

φ�ϕþα�ϕ1 ð11Þ
By this we, by using expressions for internal force components (2)
and constitutive Eq. (5), obtain the following expressions for axial
and shear deformation

ε¼�ð1�νÞω2

2λ2
cos φ; γ ¼ ð1þνÞω2

2λ2
sin φ ð12Þ

This shows that the length of the loaded beam in the case of shear
stiff beam shrinks, while a tensile stiff beam always extends. The
geometry Eq. (1) can now be by using (10–12) written in the form

dX
ds

¼ cos ϕ�ω2

2λ2
½ cos ðα�ϕ1Þ�ν cos ð2φþα�ϕ1Þ�

dY
ds

¼ sin ϕþ ω2

2λ2
½ sin ðα�ϕ1Þ�ν sin ð2φþα�ϕ1Þ� ð13Þ

and (4) may be written in the form

dφ
ds

¼ κ

dκ
ds

¼�ω2 sin φ 1þνω2

λ2
cos φ

� �
ð14Þ

The boundary conditions for (13) remains the same as (6),
while the boundary conditions for φ becomes

φð0Þ ¼ α�ϕ1; φð1Þ ¼ α ð15ÞFig. 1. Geometry and the load of the problem.
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