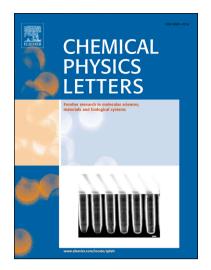
Accepted Manuscript

Research paper

 $W_{18}O_{49}$ nanorods: Controlled preparation, structural refinement, and electric conductivity

Ji Zhang, Hui Zhang, Lianyun Liu, Fan Li, Shuo Wang


PII: S0009-2614(18)30475-5

DOI: https://doi.org/10.1016/j.cplett.2018.06.002

Reference: CPLETT 35701

To appear in: Chemical Physics Letters

Received Date: 6 March 2018 Accepted Date: 2 June 2018

Please cite this article as: J. Zhang, H. Zhang, L. Liu, F. Li, S. Wang, W₁₈O₄₉ nanorods: Controlled preparation, structural refinement, and electric conductivity, *Chemical Physics Letters* (2018), doi: https://doi.org/10.1016/j.cplett.2018.06.002

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

 $W_{18}O_{49}$ nanorods: Controlled preparation, structural refinement, and electric conductivity

Ji Zhang^a, Hui Zhang^{a,*}, Lianyun Liu^a, Fan Li^{b,*}, Shuo Wang^a

^a School of Science, Beijing Jiaotong University, Beijing 100044, PR China

^b College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, PR China

ABSTRACT

This paper reports on the controlled synthesis of $W_{18}O_{49}$ nanorods using pyrolysis-reduction process through tuning both H_2 gas flow and heating temperature. The results suggest that $W_{18}O_{49}$ nanorods will grow well when calcined at 650 °C for 2 h at 10 l/h H_2 gas flow rate. Using GSAS software the fitted lattice parameters of obtained $W_{18}O_{49}$ are given, that is, a: 18.340 Å, b: 3.788 Å, c: 14.025 Å, β : 115.168°, by the Rietveld refining X-ray diffraction pattern. The result of sheet resistance measurement of samples indicates that pure $W_{18}O_{49}$ nanorods exhibit a resistivity as low as 0.068 Ω ·cm.

Keywords: W₁₈O₄₉ nanorods; Controlled preparation; Refinement; Electric conductivity

1. Introduction

 $W_{18}O_{49}$ with a monoclinic structure (P2/m) consists of the distorted WO_6 octahedra interconnecting in a corner-sharing way, which makes $W_{18}O_{49}$ readily form one-dimensional (1D) topography [1]. $W_{18}O_{49}$ is n-type semiconductor with a band gap (E_g) of 2.6 ~ 2.8 eV [2].

1

^{*} Corresponding author. Email address: hzhang1@bjtu.edu.cn (H. Zhang), vanadiumli@bjut.edu.cn (F. Li)

Download English Version:

https://daneshyari.com/en/article/7837617

Download Persian Version:

https://daneshyari.com/article/7837617

<u>Daneshyari.com</u>