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a b s t r a c t

The energy and its analytic gradient are developed for the solvation model density (SMD) combined with
the fragment molecular orbital (FMO) method. The accuracy of the energy is evaluated in comparison to
full results without fragmentation for a set of neutral and charged polypeptides. The accuracy of the gra-
dient is computed in comparison to numerical gradient. The components to the solvation energy in SMD
are compared to the polarizable continuum model (PCM). FMO with SMD and PCM is applied to analyze
protein–ligand binding in solution.

� 2018 Elsevier B.V. All rights reserved.

1. Introduction

Many chemical processes occur in solution, and it is necessary
to take into account solvent effects [1] in molecular simulations.
With an explicit treatment of solvent one needs to do long time
dynamics simulations with many solvent molecules, which makes
this route very costly for practical applications. An alternative,
often employed in quantum-chemical (QM) calculations, is to use
a continuum solvation model, a compromise between accuracy
and computational efficiency.

QM calculations of large molecular systems [2,3] can be done
with linear-scaling [4,5], fragment-based [6–16] or other
approaches [17–22]. In the fragment molecular orbital (FMO)
method [23–27], a molecular system is divided into fragments,
and their electronic state is computed in the presence of an embed-
ding electrostatic potential (ESP), dependent on the electron densi-
ties of fragments (monomers). After convergence of monomers,
fragment pair (dimer) calculations are performed, and finally the
total properties are calculated using the many-body expansion
[28]. To increase the accuracy, trimer calculations can be performed
[29]. FMO has been combined with the polarizable continuum
model (PCM) [30–32] and other solvation approaches [33–35].

In this work, FMO is combined with the solution model density
(SMD) [36] up to the three-body level. Although FMO/PCM has
been successfully applied to many systems, it has been argued
[37,38] that PCM can give poor results for some protein cavities,
and thus it is worth having an alternative to PCM. In addition,
SMD has a systematically defined set of radii for most atoms,
whereas some components of PCM lack parameters for some

atoms. Solvent effects are discussed comparing PCM and SMD,
and both methods are applied to biochemical systems to discern
their similarities and differences.

2. Methodology

SMD has two components, electrostatic and non-polar [36]. The
former is evaluated as in PCM, but numerically the results differ
because the two models use different atomic radii. The solute is
placed into a cavity, made of a union of atomic spheres, and each
sphere is divided into pieces called tesserae, with a point charge
for each tessera. These solvent charges are polarized (induced) by
the solute and in turn they polarize the solute (a self-consistent
mutual polarization). The non-polar component in SMD combines
cavitation, dispersion, and solvent structure effects (cds). This cds
term corresponds to cavitation, dispersion, and repulsion interac-
tions (cdr) in PCM. The cds and cdr terms are parametrized in an
entirely different way, but in either case the parametrization
employed in this work is independent of the electronic state of
the solute.

The FMO energy expression at the two-body level (FMO2) for a
system divided into N fragments is

E ¼
XN
I
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energies DEsolv
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DDIJ is the electron density difference (dimer minus two mono-
mers), and VIJ is the embedding solute ESP for dimer IJ due to frag-

ments other than I and J. DEsolv
IJ is the solvent screening of the I-J

interaction. In this work, explicit equations are given for FMO2,
whereas the corresponding equations for the three-body FMO
(FMO3) are omitted for simplicity.

In PCM, the solvent-related terms are

DEsolv
I ¼ DEes

I þ DEcdr
I ð3Þ

DEsolv
IJ ¼ DEes

IJ þ DECT�es
IJ þ DEdr

IJ ð4Þ

The dimer term DEsolv
IJ has an electrostatic (es) and dispersion-

repulsion (dr) components, as well as the coupling of the charge
transfer (CT) between fragments I and J to the embedding potential
due to solvent (CT � es). In SMD, the corresponding terms are

DEsolv
I ¼ DEes

I þ DEcds
I ð5Þ

DEsolv
IJ ¼ DEes

IJ þ DECT�es
IJ ð6Þ

Using pair interaction energy (PIE) decomposition analysis

(PIEDA) [39–41], it is possible to decompose DEint
IJ into the electro-

static, exchange-repulsion, charge transfer with mix terms, DFT
correlation, dispersion and solvent screening. A significant differ-

ence between PCM and SMD is in the monomer terms, DEcdr
I

(PCM) vs DEcds
I (SMD). PIEs also differ because of the absence of

DEdr
IJ in SMD, which typically contribute relatively little (at most

1–2 kcal/mol), dominated by the solute-solvent dispersion. The
values of DEes

IJ þ DECT�es
IJ are not the same in SMD and PCM because

different radii are used.
There are several levels in FMO/PCM for the embedding

solvent potential eV computed from the fragment contributions
eV I and eV IJ .

eV ¼
XN
I

eV I þ cV
XN
I>J

eV IJ � eV I � eV J
� �

ð7Þ

In the more computationally efficient methods PCM[1] and
PCMh1i, cV ¼ 0, whereas in the more accurate PCM[1(2)] and
PCM[2], cV ¼ 1 (see elsewhere [42] for a description of these
levels). Because SMD shares the electrostatic solvent treatment
and potential with PCM, the same gradation of levels can be done
with SMD. In this work, both PCM and SMD are used at the level of
h1i [32].

The FMO/SMD gradient is evaluated by taking the derivative of
the total energy in Eq. (1) with respect to a nuclear coordinate a
(@E=@a). The self-consistent Z-vector (SCZV) method [43,32] is used
in SMD in the same way as in PCM. The gradient of the cds term,
which does not depend on the electronic state, is evaluated
separately also analytically [36].

In the subsystem analysis [44], the binding energy DEis decom-
posed into the contributions of fragments. The subsystem analysis
previously developed for PCM is extended to SMD.

DE ¼
XN
I

DEbind
I ð8Þ

The fragment binding energies DEbind
I include the desolvation

and polarization effects of fragments, and residue-ligand interac-
tions. The deformation contributions are also implicitly included
by taking structures separately obtained for the bound and isolated
states. The sum in Eq. (8) runs over all fragments in the complex,
i.e., all residues and the ligand.

For the purpose of analysis, it is useful to decompose the total
energy in Eq. (1) into the solute energy E0 and the solvent-solute

interaction energy DEsolv.

E ¼ E0 þ DEsolv
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where the non-polar (np) contribution DEnp for PCM is DEcdr,

and for SMD, DEcds (none of the two includes the additional contri-
bution of 1.89 kcal/mol to accommodate for the change from 1 atm
gas to 1 M solution [45]).

3. Computational details

For all calculations, FMO implemented in GAMESS [46] was
used in parallel [47]. The computation of SMD terms was paral-
lelized. Hybrid orbital projection operators were used to describe
fragment boundaries. The solvent (water) was treated using C-
PCM or SMD using the FIXPVA [48] tesselation with 60 tesserae
per atom. In PCM, SUAHF radii were used as recommended for
FIXPVA; for SMD, its own unique set of radii [36] was used. The
polypeptides were divided as 1 residue per fragment at C atoms;
ligand was treated as a separate fragment. In DFT, the SG-1 grid
and D3(BJ) dispersion [49] were used. Geometry optimizations
were done with the threshold OPTTOL = 10�4 hartree/bohr.

The numerical tests are as follows. First, the accuracy of FMO/
SMD is evaluated with respect to the full SMD (full in this work
means unfragmented QM without using FMO) for a set of neutral
and charged capped a-helices (ALA)nX, where X is ALA (neutral),
ARG (cation) and GLU (anion) and n = 9, 19 and 39. For comparison,
similar tests were also done for PCM. The structures for these sys-
tems, denoted as a-(ALA)nX were taken from the previous study
[31]. The results reported in this Letter for density functional the-
ory can be compared to the accuracy of restricted Hartree-Fock

Fig. 1. Structures of the complexes of the Trp-cage protein and (a) neutral and (b)
anionic ligands.
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