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a b s t r a c t

The performance of Kobryn-Gusarov-Kovalenko (KGK) closure was examined in terms of the thermody-
namics for one-component Lennard-Jones fluids. The result was compared to molecular dynamics simu-
lation as well as to hypernetted chain, Kovalenko-Hirata (KH), Percus-Yevick and Verlet-modified
closures. As the density increases, the error of KGK closure shows a turnover, regarding the excess inter-
nal energy, pressure and isothermal compressibility. On the other hand, it was numerically confirmed
that the energy and the virial equations are consistent under both KH and KGK closures. The accuracies
of density-derivative and temperature-derivative of the radial distribution function are also discussed.

� 2018 Elsevier B.V. All rights reserved.

1. Introduction

A family of Ornstein-Zernike (OZ) theory has been developed to
describe the structure and thermodynamics of liquids composed
not only of monatomic molecules [1] but also of complex poly-
atomic molecules [2]. One of the typical examples is the reference
interaction site model (RISM) theory [2]. The extension of the RISM
theory to its three-dimensional version, i.e. 3D-RISM theory [2,3],
has enabled us to study solvation around a protein molecule [4–8].

On the other hand, a certain necessity concerning the numerical
convergence of the theory had arisen through the experience of its
application to a complicated system. After the appearance of 3D-
RISM theory, the modified method of direct inversion in iterative
subspace (MDIIS) was proposed [9], by which the technique for
the numerical convergence of the theory was made powerful. In
the early studies using 3D-RISM theory [3,4], it was combined with
hypernetted chain (HNC) closure, which is referred to, hereafter, as
3D-RISM/HNC. Even if we use the MDIIS method, it is generally
impossible to obtain a numerically converged solution of 3D-
RISM/HNC theory for the issue of hydration around a protein,
which was pointed out, for example, in Ref. [10]. Instead of HNC,
Kovalenko-Hirata (KH) closure has begun to be used when comple-
menting the 3D-RISM equation (i.e. 3D-RISM/KH) [5–7]. 3D-RISM/
KH theory does not suffer from a failure of numerical convergence
when we apply the theory to the hydration around a complicated
solute molecule: at least, one of the authors (T. M.) has never

experienced such a failure when applying, for example, the combi-
nation method between molecular dynamics (MD) simulation and
3D-RISM/KH theory to the hydration-related problem [11–13]. In
fact, KH closure possesses such a feature that it is numerically
much more stable than HNC closure. The superior feature of KH
closure in terms of the numerical stability must have played an
important role in many applications of 3D-RISM theory.

Recently, an ambitious attempt has been reported by Kobryn
et al. [14], in which the RISM theory was applied to very compli-
cated solvent systems such as oligomeric polyelectrolytes at a
finite concentration in electrolyte solution. Even KH closure often
fails to provide a numerically converged solution for such a system.
To resolve this problem, Kobryn-Gusarov-Kovalenko (KGK) closure
was proposed in Ref. [14]. It was pointed out in Ref. [14] that KGK
closure is numerically more stable than KH closure. On the other
hand, the performance of KGK closure in terms of its accuracy
has not been fully studied yet. Aside the article by Kobryn et al.
[14], only one paper has been reported concerning this issue
[15], focusing only on the solvation free energy. When we discuss
the applicability of KGK closure to a certain model system, the
knowledge of its performance is indispensable. It is to be noted
that the RISM theory involves another approximation in addition
to the closure: i.e., the molecular direct correlation function is
assumed to be described by the summation of site-site direct cor-
relation functions [2]. Therefore, it is desirable to study the behav-
ior of KGK closure for fluids composed of monatomic molecules, if
we intend to reveal the unpolluted property of KGK closure. Regard-
ing the above circumstances, we mainly examine the performance
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of KGK closure in terms of the thermodynamics for one-component
Lennard-Jones (LJ) fluids here.

This article studies the accuracies of the excess internal energy,
virial pressure and isothermal compressibility obtained from KGK
closure. The isothermal compressibility is evaluated via two
routes: one is from the compressibility equation, and the other
from the differentiation of the virial equation with respect to the
fluid density. The accuracy of KGK closure is discussed through
the comparison with the MD simulation. It is also compared to
the results obtained from HNC, KH, Percus-Yevick (PY) and Verlet
modified (VM) closures. Furthermore, we investigate in this article
whether the KGK approximation is thermodynamically consistent
or not between the energy equation and the virial equation. While
it is known that HNC closure possesses this type of thermodynamic
consistency irrespective of the potential [16], Santos rigorously
proved that the mean spherical approximation (MSA) closure also
exhibits this consistency for soft potentials [17]. Since KGK closure
adopts the MSA almost everywhere except only for the repulsive
core (see Eq. (4)), it would be interesting to check the energy-
virial consistency for KGK approximation. The MSA is partially
used also in the KH closure: hence, KH may be interpreted as a
hybridized closure between HNC and MSA (see Eq. (6)). Therefore,
this article examines also the KH closure in terms of the energy-
virial thermodynamic consistency. Such a consistency is checked
numerically in this article, using both the temperature-derivative
[18,19] and the density-derivative of the radial distribution
function (RDF).

2. Theory and computational methods

Throughout this study, we focus only on a one-component LJ
fluid, the potential of which is written as

uðrÞ ¼ 4e
r
r

� �12
� r

r

� �6
� �

: ð1Þ

2.1. Ornstein-Zernike theory

This section describes an outline of OZ theory briefly. The OZ
equation reads [1,2]

hðrÞ ¼ cðrÞ þ q c � hðrÞ; ð2Þ
where hðrÞ, cðrÞ, and q represent the total correlation function, the
direct correlation function, and the fluid density, respectively. The
asterisk * stands for the convolution integral. We consider the fol-
lowing five closure equations to complement OZ theory, where b

is ðkBTÞ�1(kB and T denote the Boltzmann constant and temperature,
respectively). Let us define dðrÞ as
dðrÞ ¼ �buðrÞ þ hðrÞ � cðrÞ: ð3Þ

The closure equations we consider are as follows.
(I) KGK closure [14]:

1þ h rð Þ ¼ 0 for dðrÞ 6 �1
1þ dðrÞ for dðrÞ > �1

:

�
ð4Þ

(II) HNC closure [1,2]:

1þ hðrÞ ¼ exp dðrÞ½ �: ð5Þ
(III) KH closure [2,20]:

1þ hðrÞ ¼ exp dðrÞ½ � for dðrÞ 6 0
1þ dðrÞ for dðrÞ > 0

�
: ð6Þ

(IV) PY closure [1]:

1þ hðrÞ ¼ exp �buðrÞ½ � 1þ hðrÞ � cðrÞf g: ð7Þ

(V) VM closure [21]:

1þ hðrÞ ¼ exp dðrÞ þ bðrÞ½ �; ð8Þ
where

bðrÞ ¼ � sðrÞ2
2 1þaVM sðrÞf g for sðrÞ P 0

� 1
2 sðrÞ2 for sðrÞ < 0 :

8<: ð9Þ

In Eq. (9), s(r) is defined by

sðrÞ ¼ hðrÞ � cðrÞ � bu2ðrÞ; ð10Þ
where

u2ðrÞ ¼ �4e
r
r

� �6
exp � 1

qr3

r
r

� �6qr3� �
; ð11Þ

and aVM is given by

aVM ¼ 1:0175� 0:275qr3: ð12Þ
The RDF gðrÞ is related to hðrÞ as

gðrÞ ¼ hðrÞ þ 1: ð13Þ

2.2. Equations for density-derivative of RDF

This section describes the equations for the density-derivative
of RDF, which are solved numerically. We simply follow the
method by Yu et al. [18]. A Fourier transformed form of Eq. (2) dif-
ferentiated by q is expressed as

@ hðkÞ
@q

¼
@ cðkÞ=@q� �

1þ q hðkÞ
n o

þ cðkÞhðkÞ
1� q cðkÞ ; ð14Þ

where k is the wave number, and the hat denotes the Fourier trans-
form. The density-derivatives of closure equations (Eqs. (4)–(8)) are
as follows:

(I) KGK closure

@cðrÞ
@q

¼ � @hðrÞ
@q þ @cðrÞ

@q for dðrÞ 6 �1

0 for dðrÞ > �1:

(
ð15Þ

(II) HNC closure:

@cðrÞ
@q

¼ hðrÞ @hðrÞ
@q

� @cðrÞ
@q

� �
: ð16Þ

(III) KH closure:

@cðrÞ
@q

¼ hðrÞ @hðrÞ
@q � @cðrÞ

@q

h i
for dðrÞ 6 0

0 for dðrÞ > 0:

(
ð17Þ

(IV) PY closure:

@cðrÞ
@q

¼ exp �buðrÞ½ � � 1ð Þ @hðrÞ
@q
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� �
: ð18Þ

(V) VM closure:

@cðrÞ
@q

¼ hðrÞ @hðrÞ
@q
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� �
þ gðrÞ @bðrÞ
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where

@bðrÞ
@q

¼
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@sðrÞ=@q in Eq. (20) is given by

@sðrÞ
@q

¼ @hðrÞ
@q

� @cðrÞ
@q

� b
@u2ðrÞ
@q

; ð21Þ
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