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a b s t r a c t

Predictive model of logP for Pt(II) and Pt(IV) complexes built up with the Monte Carlo method using the
CORAL software has been validated with six different splits into the training and validation sets. The
improving of the predictive potential of models for six different splits has been obtained using so-
called index of ideality of correlation. The suggested models give possibility to extract molecular features,
which cause the increase or vice versa decrease of the logP.

� 2018 Elsevier B.V. All rights reserved.

1. Introduction

Platinum complexes are a well-known class of substances used
in cancer treatment [1]. There is a large variety in the pharmaco-
logical behavior of platinum complexes [1,2]. The logP is the useful
information about behaviour of platinum complexes from point of
view of drug discovery. This stimulates works dedicated to estab-
lishing of quantitative structure - property relationships (QSPRs)
for logP of platinum complexes [3–7], e.g. the data on logP is used
in drug discovery related to anti-HIV activity [8]; for treatment of
skin diseases [9]; for establishing of the anticancer potential of
crown ethers [10]; for searching of new antibiotics [11]; etc. It
should be noted, that lipophilicity, expressed as the octanol-
water partition coefficient, constitutes the most important
property in drug action, influencing both pharmacokinetic and
pharmacodynamics processes as well as drug toxicity [12].
Computational models for logP can be attractive alternative of
the experimental measurements at least as preliminary estimation
of the parameter for new substances. Thus, the development of
theoretical computational methods, which can predict the logP is
the important task of contemporary science [13–22].

The estimation of predictive potential of models for logP of
platinum complexes, which are built up using the Monte Carlo
technique via the CORAL software (www.insilico.eu/coral), is the
aim of the present study.

2. Method

2.1. Data

The experimental data on logP for Pt(II) and Pt(IV) complexes
(n = 46) together with simplified molecular input-line entry sys-
tem (SMILES) [23,24] were taken in the literature [1]. The total
set has been six times randomly split into the training (�25%),
invisible training (�25%), calibration (�25%), and validation
(�25%) sets. Table 1 shows that these six splits are not identical
[25].

2.2. Optimal descriptor

QSPR-models of the logP for Pt(II) and Pt(IV) complexes sug-
gested in this work are calculated with descriptors based on corre-
lation weights (CW) of molecular features extracted from SMILES:

logP ¼ C0 þ C1 � DCWðT�;N�Þ ð1Þ
The optimal descriptor used in this work is calculated as the

following:

DCWðT�;N�Þ ¼
X

CWðSkÞ þ
X

CWðSSkÞ ð2Þ
The Sk are SMILES-atoms, i.e. one symbol of the SMILES notation

(e.g. ‘c’, ‘C’, ‘N’, etc.) or two symbols which cannot be examined sep-
arately (e.g. ‘Cl’, ‘Br’, etc.). The SSk is combine of two SMILES-atoms.
The CW(Sk) and CW(SSk) are correlation weights which are
involved to calculate descriptor with Eq. (2). Table 2 contains an
example of CW(Sk) and CW(SSk).
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The T is threshold to separate the Sk and SSk into the categories:
(i) rare; and (ii) non-rare. The rare attributes are not used to build
up a model: their correlation weights are equal to zero. The N is the
number of epochs of the Monte Carlo optimization. One epoch is
sequence of modifications of all correlation weights of non-rare
(according to selected threshold) SMILES attributes. The T = T*
and N = N* are numerical data on these parameters which provide
the best statistical quality of the model for the calibration set [25–
27]. The Sk and SSk are described in the literature [26].

Each the above-mentioned set (Table 1) is aimed to solve the
‘‘individual” task:

(i) The training set is aimed to calculate correlation weights,
which give maximal correlation coefficient between DCW
(T*,N*) and logP for complexes distributed into the training
set;

(ii) The invisible training set is aimed to confirm that the corre-
lation ‘‘DCW(T*,N*) � logP” is more or less satisfactory for
similar substances which are not involved in the training
set;

(iii) The calibration set is aimed to inform about the moment of
the beginning of overtraining; and

(iv) The validation set is aimed to estimate factual predictive
potential of the model for substances which are unknown
during the optimization process. Thus, factually, the train-
ing, invisible training, and calibration sets are the structured
training set.

Table 3 shows an example of calculation of the DCW(T*,N*). The
above-mentioned correlation weights are calculated with opti-
mization by the Monte Carlo method. The target function of the
optimization can be [25]:

TF ¼ Rþ R0 � R� R0�� ��� 0:1 ð3Þ
The R and R0 are correlation coefficients between experimental

and predicted endpoint for the training and invisible training sets.
The Monte Carlo optimization provides numerical data on the cor-
relation weights CW(Sk) and CW(SSk) which provide maximum of
the TF.

In addition, the modified target function can be used for build-
ing up the predictive model calculated with Eq. (1) [27,28]:

TFm ¼ TF þ IIC � 0:1 ð4Þ
The 0.1 for Eqs. (3) and (4) is defined ‘‘empirically” as coefficient

that gives more or less satisfactory predictive potential for models
of different endpoints [14,23,25,26].

The IIC is the so-called index of ideality of correlation (IIC)
[27,28]. The index is defined according to the following logic. The
quality of prediction for one arbitrary compound can be estimated
as the following:

Dk ¼ observedk � calculatedk ð5Þ
Having data on all Dk for the calibration set, one can calculate

sum of negative and positive values of Dk similar to mean absolute
error (MAE):

�MAEcalibration ¼ 1
�N

X�N

k¼1

Dkj jDk < 0; �N is thenumberofDk < 0 ð6Þ

þMAEcalibration ¼ 1
þN

XþN

k¼1

Dkj jDk P 0; þN is thenumberof Dk P 0; ð7Þ

The IIC is calculated with the following formula:

IIC ¼ rcalibration � minð�MAEcalibration;
þMAEcalibrationÞ

maxð�MAEcalibration; þMAEcalibrationÞ ð8Þ

According to Eq. (8), the diapason of IIC is (�1, 1). The IIC is not
identic to traditionally used criteria of predictive potential of QSPR
models. Table 3 contains a group of widely used criteria of predic-
tive potential of QSPR models [29–31]. All these criteria obey the
principle ‘‘larger value of a criterion means better predictive poten-
tial”. Consequently, the quality of the choice of model (model-1 or
model-2) according to the above-mentioned criteria can be com-
pared. Fig. 1 shows the scheme how to select better model accord-
ing to one of the listed criteria.

Table 1
Percentage of identity for six random splits into the training and validation sets.

Set Split 2 Split 3 Split 4 Split 5 Split 6

Split 1 Training 17.4* 18.2 26.1 27.3 26.1
Invisible training 16.7 33.3 26.1 16.7 34.8
Calibration 8.7 25.0 26.1 26.1 8.3
Validation 9.1 27.3 26.1 17.4 36.4

Split 2 Training 100 17.4 25.0 26.1 8.3
Invisible training 100 33.3 26.1 41.7 17.4
Calibration 100 17.4 18.2 36.4 8.7
Validation 100 18.2 43.5 34.8 18.2

Split 3 Training 100 17.4 9.1 17.4
Invisible training 100 26.1 25.0 34.8
Calibration 100 26.1 34.8 50.0
Validation 100 26.1 26.1 18.2

Split 4 Training 100 26.1 33.3
Invisible training 100 34.8 36.4
Calibration 100 63.6 26.1
Validation 100 41.7 17.4

Split 5 Training 100 34.8
Invisible training 100 17.4
Calibration 100 17.4
Validation 100 17.4

*Identity %ð Þ ¼ Ni;j

0:5� NiþNjð Þ � 100
where
Ni,j is the number of substances which are distributed into the same set for both i-th split and j-th split (set = training, invisible training, calibration, and validation).
Ni is the number of substances which are distributed into the set for i-th split.
Nj is the number of substances which are distributed into the set for j-th split.
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