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a b s t r a c t

A general exponential, coupled cluster like, approach is discussed to extract an effective Hamiltonian in
configurational space, as a sum of 1-body, 2-body up to n-body operators. The simplest two-body
approach is illustrated by calculations on simple magnetic model systems. A key feature of the approach
is that equations up to a certain rank do not depend on higher body cluster operators.

� 2018 Elsevier B.V. All rights reserved.

1. Introduction

The theoretical investigation of magnetic systems is an impor-
tant challenge in quantum chemistry. Current approaches essen-
tially partition the problem into two manageable pieces. Given a
magnetic material, the system is decomposed in suitable interact-
ing magnetic dimers and J-coupling constants for each dimer of
interest are extracted from ab initio calculations or broken symme-
try density functional theory (DFT) [1,2] calculations. The recent
review by Malrieu et al. [3] provides an in-depth description of
suitable methods, as does the recent monograph by Broer et al.
[4]. Once a magnetic model Hamiltonian based on a decomposition
in terms of dimers is extracted, the resulting model Hamiltonian
can be treated using methods suitable for spin-Hamiltonian, e.g.
the density matrix renormalization group (DMRG) approach [5,6].

The problem investigated in this paper is perhaps best
introduced through an example. Consider, we have a number of
magnetic moieties, weakly coupled through some spacers. The
magnetic moieties might be individual atoms, e.g. N, O, F or Cr,
while the spacers in this paper will be represented by Ar atoms.
Each magnetic moiety can be represented by a small set of local-
ized (atomic) orbitals that comprise a complete active space or
CAS. The exact solution to this model (CASCI) problem is obtained
by performing a full CI calculation over the CAS configurations.
This quickly becomes prohibitively expensive, and our goal is to
find a more economical solution. Each magnetic moiety is charac-
terized by a number of low-lying states, that are multiconfigura-

tional in nature, while in addition there are a larger number of
states for each moiety that are substantially higher in energy.
The CASCI solution itself is not sufficiently accurate, and inclusion
of dynamical correlation effects is vital. We will disregard this
complication here but anticipate that inclusion of dynamical corre-
lation is possible for the approach, e.g. using the recently devel-
oped multireference equation of motion (MREOM) approach [7–9].

The aim we have is to find an effective Hamiltonian over only
the low-lying states that can capture the coupling between the
low-lying states in a systematic fashion based on a Bloch equation
[10,11]. The effective Hamiltonian may contain higher-body inter-
actions, even if the original Hamiltonian contains only two-body
interactions, i.e. only dimer interactions. At the heart of the proce-
dure is a transformation parameterized by an exponential opera-
tor. However, the operator is not expressed in the language of
second quantization, but rather using the configurations on each
site, which can be partitioned in the low-lying states of interest
and the remaining high-lying states. The approach is coined
Configurational Coupled Cluster therefore, and the aim is to find
a systematic effective Hamiltonian acting in the subspace of
low-lying states. The subsequent diagonalization of this effective
Hamiltonian is not trivial if a large number of magnetic sites is con-
sidered, and in future work we plan to address the direct calcula-
tion of thermal properties for such effective Hamiltonians. This
paper is primarily a first investigation of the ideas, and it is orga-
nized as follows. In Section 2, the theory is discussed, and we start
by an introduction of the magnetic model systems in this work,
that provides motivation. We continue to discuss the general the-
ory and its salient features. We explicitly consider the simplest two
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realizations of the theory using a pair T̂2 operator and the extrac-
tion of two-body and three-body effective Hamiltonians. In the
results section, we evaluate and illustrate the methodology for
artificial, but sufficiently complicated model systems that have
up to four magnetic sites. The final section summarizes the results
and provides further perspectives.

2. Theory

2.1. Introduction to magnetic model systems

Let us first introduce some artificial magnetic systems, such as
Ar2N3, Ar2O3, Ar2Cr3, that cannot be made experimentally, but they
serve as illustrations and useful model systems. These systems are
described as open-shell systems, as nitrogen, oxygen and chro-
mium atoms all have unpaired electrons. In addition, the spin of
unpaired electrons can create a magnetic field; as a result, each
N, O, Cr, atom is considered as a magnetic site. Meanwhile, Ar
atoms act as spacers. The geometry of the system is designed such
that the magnetic atoms are well separated.

For each magnetic system, we would like to preserve a fixed
number of particles on each magnetic site, or equivalently we will
neglect ionic configurations. At the level of the second-quantized
Hamiltonian, the number of creation and annihilation operators
for each site should be equal. We assume that

hr
p ¼ 0; unless ðp; rÞ 2 ðiÞ ð1Þ

hrs
pq ¼ 0; unless ðp; q; r; sÞ 2 ðiÞor ðp; rÞ 2 ðiÞ; ðq; sÞ 2 ðjÞ

ðp; sÞ 2 ðiÞ; ðq; rÞ 2 ðjÞ

�
ð2Þ

Here we use indices i; j to label two different magnetic sites.
Localized orbitals centered on magnetic sites are labelled as
p; q; r; s. As a result, neutral configurations cannot couple to ionic
configurations. This form of the Hamiltonian is an important sim-
plifying assumption. For more realistic systems, one might employ
a preliminary similarity transformation such that ionic terms are
transformed to zero, in the spirit of the MREOM approach [7–9].
Alternatively, the current approach would have to be extended to
include ionic configurations. Both solutions are non-trivial, and at
this point we will simply analyze results under the simplifying
assumption that Eqs. (1) and (2) are valid. Another significant sim-
plification arises if we assume that we can limit the orbitals to a
relatively small set of active orbitals that describe the primary
magnetic interactions. In practice, one can solve complete active
space self-consistent field (CASSCF) [12] solutions for a small num-
ber of high-spin multiplets, that do not require a large diagonaliza-
tion space. We will consider here the problem of calculating all
spin states in the CAS space, while neglecting ionic interactions,
using a basis of localization orbitals. This provides a working
hypothesis for our initial investigations of the Configurational Cou-
pled Cluster approach. Finally, spin-orbit coupling is important in
these systems [13], but is not considered in this preliminary study.

The new neutral Hamiltonian in a complete active space (CAS)
is given by

Ĥ ¼
X
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The labels p; p0; p1; p2; p3; p4 denote localized orbitals on site i,
while q; q0 indicate localized orbitals on site j. The fourth term in
Eq. (3) is the exchange term arising from the two-body integral,
which is mainly responsible for magnetic interactions. The spin
can be exchanged between two sites through action of the two-
body operators (see Fig. 1).

In order to investigate the magnetism of these model systems,
the properties with regard to the electronic configuration of each
atom should be described first. We define many-electron low-
lying states corresponding to different atoms (or sites) i; j; k; l; � � � as
j Ii; j Ji; j Ki; j Li; � � �, and high-lying states are denoted as
j Ai; j Bi; j Ci; j Di; � � � while the general states are labelled as
j Pi; j Qi; j Ri; j Si; � � �, respectively. Likewise, if there is more than
one state, we can use the general labels j I0i; j J0i; j K 0i; j L0i; � � �, for
the low-lying states, j A0i; j B0i; j C0i; j D0i; � � �, standing for high-lying
states, and j P0i; j Q 0i; j R0i; j S0i; � � �, describing general states for each
different site. Importantly, this partitioning of configurations is
basedon single site (or atomic) calculations, using the localizedorbi-
tals obtained after the high-spin CASSCF calculation (see Table 1).

To continue our discussion of the magnetic model systems, we
first consider the electronic configuration for some representative
atoms in Table 2. We can quantitatively explore the number of
microstates of the magnetic model systems Ar2X3, X = N, O, Cr,
listed in Table 3, which indicates the complexity of the problem,
even for simple model systems.

Our aim is to reduce the size of the full space of CASSCF dimen-
sion, to that of the low-lying states. For example, the number of
valence states is 48,620 for Ar2N3, while the number of low-lying
states is only 64, which would be the dimension of the two-body
effective Hamiltonian.

Fig. 1. Diagram representing the exchange interaction.

Table 3
Microstates for Ar2X3 X = N, O, Cr.

Molecule Total Valence States Total Neutral
States

Total Low-lying
States

Ar2N3 18
9

� �
¼ 48620 203 ¼ 8000 43 = 64

Ar2O3 18
12

� �
¼¼ 18564 153 ¼ 3375 93 = 729

Ar2Cr3 36
18

� �
¼ = 9.07E+09 9243 = 7.89E+08 73 = 343

Table 2
Electronic configuration for three different atoms.

Atom-Type Ground States
Symbol

Degeneracy Number of Neutral
States Per Atom

N 4S 4 6
3

� �
¼ 20

O 3P 9 6
4

� �
¼ 15

Cr 7S 7 12
6

� �
¼ 924

Table 1
Electronic configuration representation for systems up to four sites.

Sites Low-lying States High-lying States General States

i j Ii; j I0i; j I00i; � � � j Ai; j A0i; j A00i; � � � j Pi; j P0i; j P00i; � � �
j j Ji; j J0i; j J00i; � � � j Bi; j B0i; j B00i; � � � j Qi; j Q 0i; j Q 00i; � � �
k j Ki; j K 0i; j K 00i; � � � j Ci; j C0i; j C00i; � � � j Ri; j R0i; j R00i; � � �
l j Li; j L0i; j L00i; � � � j Di; j D0i; j D00i; � � � j Si; j S0i; j S00i; � � �
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