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In this paper a boundary element method is developed for the inelastic nonuniform torsional problem

of simply or multiply connected prismatic bars of arbitrarily shaped doubly symmetric cross section,

taking into account the secondary torsional moment deformation effect. The bar is subjected to

arbitrarily distributed or concentrated torsional loading along its length, while its edges are subjected

to the most general torsional boundary conditions. A displacement based formulation is developed and

inelastic redistribution is modeled through a distributed plasticity model exploiting three dimensional

material constitutive laws and numerical integration over the cross sections. An incremental–iterative

solution strategy is adopted to resolve the elastic and plastic part of stress resultants along with an

efficient iterative process to integrate the inelastic rate equations. The one dimensional primary

angle of twist per unit length, a two dimensional secondary warping function and a scalar torsional

shear correction factor are employed to account for the secondary torsional moment deformation

effect. The latter is computed employing an energy approach under elastic conditions. Three boundary

value problems with respect to (i) the primary warping function, (ii) the secondary warping one and

(iii) the total angle of twist coupled with its primary part per unit length are formulated and

numerically solved employing the boundary element method. Domain discretization is required only

for the third problem, while shear locking is avoided through the developed numerical technique.

Numerical results are worked out to illustrate the method, demonstrate its efficiency and wherever

possible its accuracy.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

In engineering practice we often come across the analysis of
members of structures subjected to twisting moments. Curved
bridges, ribbed plates subjected to eccentric loading or columns
laid out irregularly in the interior of a plate due to functional
requirements are most common examples. Moreover, design of
bars and bar assemblages based on elastic analysis are most likely
to be extremely conservative not only due to significant differ-
ence between initial yield and full plastification in a cross section,
but also due to the unaccounted for yet significant reserves of
strength that are not mobilized in redundant members until after
inelastic redistribution takes place. Thus, material nonlinearity is
important for investigating the ultimate strength of a bar that
resists torsional loading, while distributed plasticity models are
acknowledged in the literature [1–3] to capture more rigorously

material nonlinearities than cross sectional stress resultant
approaches [4] or lumped plasticity idealizations [5,6].

When an elastic bar is subjected to uniform torque arising
from two concentrated torsional moments at its ends while the
warping of the cross section is not restrained, the angle of twist
per unit length remains constant along the bar. Under these
conditions, the bar is leaded to uniform torsion and the well
known primary (St. Venant) shear stress distribution arises
forming the primary torsional moment stress resultant [7]. When
arbitrary torsional boundary conditions are applied either at the
edges or at any other interior point of a bar due to construction
requirements, this bar under the action of general twisting
loading is leaded to nonuniform torsion and additional normal
and secondary (warping) shear stresses arise [8], forming the
warping moment and secondary torsional moment stress resul-
tants, respectively. In order to include warping shear stresses in
the global equilibrium of the bar, that is to account for the
secondary torsional moment deformation effect (STMDE), an
additional kinematical component (along with the angle of twist)
is generally required (see for example [9,10]), increasing the
difficulty of the problem at hand.

The STMDE has been shown in the literature to be significant,
especially on closed shaped section bars. Massonnet [11] presents
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a qualitative explanation why warping shear stresses are of
the same order of magnitude as primary ones in the case
of closed shaped section bars. As early as 1954, Benscoter [12]
analyzed the nonuniform torsional problem of multicell section
bars. Since then, a significant amount of relevant contributions
has appeared in the literature as well [10,13–17]. Since the topic
at hand is analogous to the geometrically nonlinear Timoshenko
beam theory of shear-bending loading conditions [18,19], it does
not satisfy local equilibrium equations (for relevant discussions
see for example Simo et al. [20] and Minghini et al. [21]).
This problem is alleviated by introducing torsional shear correc-
tion factor at the global level [19,22,23] and suitable warping
shear stress distribution at the local level [24,25,22]. The afore-
mentioned contributions refer to the linear elastic regime. If
inelastic effects are considered, especially through distributed
plasticity formulations, then the nonuniform [26,27] torsion
problem including STMDE requires a much more rigorous
analysis.

Apart from research efforts in which bars are idealized with
computationally demanding three dimensional [28] or shell [29]
elements, several researchers proposed specialized beam ele-
ments to analyze bars under inelastic nonuniform torsion
[1,26,27,30–39]. In some of these contributions the inclusion of
warping shear stresses in the global equilibrium of the bar has
been achieved. For example, Wunderlich et al. [35] employed a
power series numerical technique using an Updated Lagrangian
formulation to study thin-walled beams under general loading
conditions. Nie and Zhong [36] and Wang et al. [37] studied thin-
walled beams under general loading conditions by employing an
Updated Lagrangian description and the FEM. Alsafadie et al. [38]
formulated a mixed corotational beam element to study thin-
walled beams under general loading conditions. Gruttmann et al.
[39] analyzed beams of arbitrarily shaped cross section under
general loading conditions employing the FEM. In these publica-
tions, two 1-D kinematical components are employed to model
nonuniform torsion. However torsional shear correction factor is
not included in the analyses, while the employed warping shear
stress distributions do not satisfy local equilibrium considerations
under inelastic or even elastic conditions as well.

A different approach is undertaken in the recent contribution
of Sapountzakis and Tsipiras [40] where a single (fourth-order)
governing differential equation is formulated with respect to a
single kinematical component (angle of twist), leading to an
approximate solution of the problem at hand. However, the
adopted warping shear stress distribution verifies local equili-
brium equations under elastic conditions. Moreover, an alterna-
tive methodology is presented in the very recent contribution of
Le Corvec and Filippou [41], where a multitude of local section
warping degrees of freedom are introduced in order to model
effects such as in-plane plasticity effects, constrained warping,
shear lag, etc. This technique does not require the introduction of
torsional shear correction factor, however the reduction of the
number of employed degrees of freedom requires further inves-
tigation, while an example of a thick-walled cross section beam is
not presented. In the publication of Wackerfuß and Gruttmann
[42], beams of thick-walled rectangular cross sections are worked
out by employing a series of polynomials as global warping
functions in order to capture advanced effects such as in-plane
inelastic redistribution and transverse contraction. Moreover, the
same researchers [43] have employed local warping functions to
capture the aforementioned effects in moderately thick arbitrarily
shaped cross section beams, however bimoment loading cannot
be applied at the bar. Finally, it is worth here noting that the BEM
has not yet been employed to the inelastic nonuniform torsional
problem of bars, with the exception of the aforementioned work
of Sapountzakis and Tsipiras [40].

In this paper a boundary element method is developed for the
inelastic nonuniform torsional problem of simply or multiply
connected prismatic bars of arbitrarily shaped doubly symmetric
cross section taking into account the effect of secondary torsional
moment deformation. The bar is subjected to arbitrarily distrib-
uted or concentrated torsional loading along its length, while its
edges are subjected to the most general torsional boundary
conditions. A displacement based formulation is developed and
inelastic redistribution is modeled through a distributed plasti-
city model exploiting three dimensional material constitutive
laws and numerical integration over the cross sections. An
incremental–iterative solution strategy is adopted to resolve the
elastic and plastic part of stress resultants along with an efficient
iterative process to integrate the inelastic rate equations [44]. The
one dimensional primary angle of twist per unit length, a two
dimensional secondary warping function and a scalar torsional
shear correction factor are employed to account for STMDE. The
latter is computed employing an energy approach under elastic
conditions [22]. Three boundary value problems with respect to
(i) the primary warping function, (ii) the secondary warping one
and (iii) the total angle of twist coupled with its primary part per
unit length are formulated and numerically solved employing the
boundary element method [45]. Domain discretization is required
only for the third problem, while shear locking is avoided through
the developed numerical technique. The essential features and
novel aspects of the present formulation compared with previous
ones are summarized as follows:

(i) For the first time in the literature, STMDE is taken into
account to the problem at hand and its influence is quanti-
fied. Evaluation of both St. Venant and warping shear stresses
is based on the solution of boundary value problems for-
mulated by exploiting local equilibrium considerations under
elastic conditions. A torsional shear correction factor is also
employed to capture STMDE more rigorously. It is computed
using an energy approach under elastic conditions.

(ii) The formulation is a displacement based one taking into
account inelastic redistribution along the bar axis by exploit-
ing three dimensional material constitutive laws and numer-
ical integration over the cross sections (distributed plasticity
approach). The plastic part of the secondary twisting
moment stress resultant is successfully taken into account
through the proposed approach.

(iii) The cross section is an arbitrarily shaped thin- or thick-
walled doubly symmetric one. The formulation does not
stand on the assumptions of a thin-walled structure and
therefore the cross section’s primary torsional, secondary
torsional and warping rigidities are evaluated ‘‘exactly’’ in a
numerical sense.

(iv) An incremental–iterative solution strategy is adopted to
resolve the elastic and plastic part of stress resultants.
Integration of the inelastic rate equations is performed for
each monitoring station with an efficient iterative process
and the plastic part of stress resultants is obtained employing
incremental strains.

(v) The developed procedure retains most of the advantages of a
BEM solution over a pure domain discretization method,
although it requires domain discretization to the longitudinal
problem, exhibiting the following features:
� Shear locking is avoided by employing the same order of

approximation for both the total and the primary part of
the angle of twist per unit length.
� Cross sectional discretization is employed exclusively for

numerical integration of domain integrals.
� Finite differences and differentiation of shape functions

are not required.
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