
Research paper

An explicitly correlated helium wave function in hyperspherical
coordinates

Richard Habrovský
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a b s t r a c t

Wave functions of a new functional kind has been proposed in this work for helium-like atoms. These
functions depend explicitly on interelectronic and hyperspherical coordinates. The best ground state
energy for the helium atom �2:903724376677a:u. has been calculated using the variational method with
a basis including a single exponential parameter. To our knowledge, this is the best result so far using of
hyperspherical coordinates. Comparable result has been obtained for the hydrogen anion. For helium
atom, our best wave functions matched the Kato cusp conditions within an accuracy below 6:10�4. An
important feature of proposed wave functions is the inclusion of negative powers of R ¼ ffiffiðp r21 þ r22Þ in
combination with positive powers of r12 into the wave function. We showed that this is necessary con-
dition for proposed wave function to be a formal solution of Schrödinger equation.

� 2018 Elsevier B.V. All rights reserved.

1. Introduction

Since Hylleraas’ work, it is well known [1,2], that one of the nec-
essary conditions of a rapid convergence towards the exact nonrel-
ativistic ground state helium energy is the inclusion of r12 terms
into the wave function. Until now many different methods, in
which the r12 term is used to construct the wave function, have
been suggested. These methods could be divided to variational
[1–12], correlated-function hyperspherical-harmonic (hh) meth-
ods [13–15] (a nice overview of hh methods can be found in the
paper of Krivec [15]) and ICI method (iterative complement inter-
action method)[16–18]. In general, we can state that variational
methods converge to globally optimized solutions while
hyperspherical-harmonic methods converge pointwise. However
it is known (Bartlett et. all [19]), that wave function created from
only the Slater functions and powers of r1; r2 and r12 is not the
exact one. Bartlett [20] and Fock [21] were the first, who pointed
out that exact wave function must depend on coordinate

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21 þ r22

q
. Fock’s wave function depends on the powers of R2

multiplied by powers of the logarithmic term lnR2. Due to the
mathematical difficulty of direct implementation of Fock’s
approach it was probably firstly implemented in the work of Sochi-
lin and Ermolaev [22]. The next important work was done by Fran-
kowski and Pekeris [5] in 1966. Their results were improved by
Freund, Huxtable and Morgan [6], each group used wave functions

based on Hylleraas coordinates and powers of the logarithmic term
of the coordinate s ¼ r1 þ r2.

Our effort is concentrated on finding a competitive approach
with use of simple functions as coordinate system that could be
generalized to more than two electron atoms. We proposed the
approach where the wave function depends besides the powers

of r12 on the hyperradial coordinate R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21 þ r22

q
and on the coor-

dinate t ¼ ðr22 � r21Þ=ðr22 þ r21Þ. The function t has only one shortage,
it is not well defined at the region where r1 ! 0 and r2 ! 0 (it does
not have double limit in the point r1 ¼ 0 and r2 ¼ 0, it depends on
path that goes to this point), so it has not derivative in this point.
But in the rest area it is well defined, so it is not a significant defect.
This function is more simple and easier to handle than that Fock’s
one. Probably the first attempt to use these coordinates directly in
variational approaches was done in [24], but the authors did not
used interelectronic coordinates rij.

As a first test of quality of the basis set all calculations were
done with the same exponential scale factor f in expð�fRÞ. An
important feature of this approach is the inclusion of negative
powers of R in combination of positive powers of r12. The incorpo-
ration of these terms is – similar to the approach of Kinoshita [3] –
necessary for the wave function to be a formal solution of
Schrödinger equation. In [23] Sochilin and Ermolaev firstly pro-
posed using the powers of the function w ¼ r12=R for the determi-
nation of excited 2S3 state energy of helium atom. In this approach,
the Hylleraas coordinates were used and it is not clear from their
article, how they used the proposed function w in actual
calculations.
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As a first step the variational method has been used. We want to
show that this (or similar) proposed basis sets open new possibil-
ities in finding of the proper wave function that satisfies all cusp
conditions. We believe that this knowledge will increase a chance
to construct general few electron (with number of electrons more
than two) atomic (or molecular) wave functions, because of a pair-
wise character of electron-electron and nuclear-electron
interactions.

2. Hamiltonian transformation and basis set construction

The Hamiltonian for helium atom in S basic state in coordinates
r1; r2 and r12 can be written as

H ¼ �1
2

@2

@r21
� 1
r1

@

@r1
� 1
2

@2

@r22
� 1
r2

@

@r2
� @2

@r212
� 2
r12

@

@r12

� 1
2
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r1r12

@2
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� 1
2
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r2r12

@2

@r2@r12
� Z
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� Z
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þ 1
r12
ð1Þ

As it was already mentioned in the introduction, a function con-
structed with the powers of r1; r2 and r12 is not an exact eigenfunc-

tion of the Hamiltonian (1) due to the cross terms r22
r1r12

@2

@r1@r12
and

r21
r2r12

@2

@r2@r12
. Let us make the following transformation of the coordi-

nate system:

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21 þ r22

q
ð2Þ

t ¼ r22 � r21
r22 þ r21

ð3Þ

so the r1 and r2 coordinates can be expressed as

r1 ¼ R
ffiffiffiffiffiffiffiffiffiffiffi
1� t

p
ffiffiffi
2

p ð4Þ

r2 ¼ R
ffiffiffiffiffiffiffiffiffiffiffi
1þ t

p ffiffiffi
2

p ð5Þ

After somehow lengthy manipulations we obtain the following
transformed Hamiltonian

H ¼ �1
2

@2

@R2 �
5
2R

@

@R
� 2ð1� t2Þ

R2

@2

@t2
þ 6t
R2

@

@t
� r12

R
@2

@R@r12

� 2t
r12

@2

@t@r12
þ 2t:r12

R2

@2

@t@r12
� @2

@r212
� 2
r12

@

@r12
� Z

ffiffiffi
2

p

R
ffiffiffiffiffiffiffiffiffiffiffi
1� t

p

� Z
ffiffiffi
2

p

R
ffiffiffiffiffiffiffiffiffiffiffi
1þ t

p þ 1
r12

ð6Þ

We see that the cross terms that caused problems in (1) are now
transformed to somewhat more convenient expressions, namely,
the differential terms now always contain at most a single singular-
ity factor [compared with double singularity factors

ðr1r12Þ�1
; ðr2r12Þ�1 in (1)] with all the unconvenient double singular-

ity factors occurring now only in nuclear potential terms. It seems
rather natural to include some combinations of the powers of
R; r12 and t into the wave function. Moreover, we must carefully
treat the singularities in potentials and the antisymmetry of the
wave function. If we could expand the potential term

Vnuc ¼ � Z
ffiffiffi
2

p

R
1ffiffiffiffiffiffiffiffiffiffiffi
1� t

p þ 1ffiffiffiffiffiffiffiffiffiffiffi
1þ t

p
� �

ð7Þ

in a Taylor series around t ¼ 0 in the whole range of t, the solution

in the form of linear combinations of Rir j
12t

2k exp�fR would indeed
be sufficient. Our analysis showed (see Appendix A) that in this case
we can eliminate all the singularities when we also include –

similar to Kinoshita [3] – combinations with negative powers i for

Ri. Restricting the Taylor expansion to even powers of t guarantees
the required symmetry with respect to the particle interchange,
moreover, odd powers of t mutually cancel in the Taylor expansion
of (7) anyway. However, this Taylor expansion evidently diverges
for t ¼ �1. The modified expansion

Vnuc ¼ � 2
ffiffiffi
2

p
Z

R
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� t2

p 1�
X1
k¼1

ð4k� 3Þ!!
4k!!

t2k
 !

ð8Þ

already correctly reproduces the singular behaviour for t ¼ �1,
however, the convergence of the series in the vicinity of the singu-
larities is slower. On the other hand, the alternative expansion

Vnuc ¼ � 2Z

R
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� t2

p 1þ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� t2
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þ
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1� t2
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 !
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works well anywhere except the vicinity of t ¼ 0. Based on these
potential expansion considerations we suggested the following
form for our wave function (para case)

W1 ¼
X1
i;j

X1
k¼0

X1
l¼0

CijklR
ir j

12t
2k

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� t2

p l
e�fR að1Þbð2Þ � að2Þbð1Þffiffiffi

2
p : ð10Þ

With this form a function we have a chance to eliminate the poten-

tial term 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� t2

p
. Summations over l in (10) are restricted to 0

and 1 in order to avoid redundancies caused by combinations of
powers of t2k.

By linear combinations of the functions of the type (10) a for-
mally simpler form can be obtained

W2 ¼
X1
i;j

X1
k¼0

CijkR
ir j

12
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1� t2

p k
e�fR að1Þbð2Þ � að2Þbð1Þffiffiffi

2
p : ð11Þ

As (10) can be transformed into (11) it is not surprising that also for
a finite truncation of infinite sums in (10), (11) these two functions
give for a comparable basis sets almost the same results. In our test
calculations the wave functions of the type (10) gave slightly better
results, so we decided to work further with W1 rather than W2 (we
will refer to this type of function as Basis A in the text).

For even better cancellation of the nuclear potential we sug-
gested a wave function of a little more complex form,
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X1
i
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Rir j12e
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Expansion in this basis set (denoted as Basis B) has the advantage
that for properly chosen coefficients Aijk;Bijk;Cijkl acting with (6)
on (12) results in the same type of functions on both sides of the
Schrödinger equation. Until now we did not find anything that
would contradict the statement that (12) is a formal solution of
the Schrödinger equation.

In addition, we considered also a modification of (12) with more
complex exponential factor expf�fRð

ffiffiffiffiffiffiffiffiffiffiffi
1� t

p
þ ffiffiffiffiffiffiffiffiffiffiffi

1þ t
p Þ=

ffiffiffi
2

p
g instead

of the simple expð�fRÞ. This function we denoted as Basis C.
Notice that each of the suggested forms of wave function (10)–

(12) is also automatically antisymmetric with respect to particle
interchange.
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