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In this paper, we seek to find non-rotating beams with continuous mass and flexural stiffness

distributions, that are isospectral to a given uniform rotating beam. The Barcilon–Gottlieb transforma-

tion is used to convert the fourth order governing equation of a non-rotating beam, to a canonical

fourth order eigenvalue problem. If the coefficients in this canonical equation match with the

coefficients of the uniform rotating beam equation, then the non-rotating beam is isospectral to the

given rotating beam. The conditions on matching the coefficients leads to a pair of coupled differential

equations. We solve these coupled differential equations for a particular case, and thereby obtain a class

of non-rotating beams that are isospectral to a uniform rotating beam. However, to obtain isospectral

beams, the transformation must leave the boundary conditions invariant. We show that the clamped

end boundary condition is always invariant, and for the free end boundary condition to be invariant, we

impose certain conditions on the beam characteristics. We also verify numerically that the frequencies

of the non-rotating beam obtained using the finite element method (FEM) are the exact frequencies of

the uniform rotating beam. Finally, the example of beams having a rectangular cross-section is

presented to show the application of our analysis. Since experimental determination of rotating beam

frequencies is a difficult task, experiments can be easily conducted on these rectangular non-rotating

beams, to calculate the frequencies of the rotating beam.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

An undamped vibrating system has a set of natural frequen-
cies, forming a spectrum, at which it vibrates freely without
external forces. An important class of problems for such vibrating
systems can be broadly classified into inverse problems and
isospectral problems. In inverse problems [2,3], one tries to
determine the material properties of a system for a given
frequency spectrum. In general, more than one frequency spec-
trum is required for a reconstruction procedure to determine the
material properties of the system [4]. Systems, that have the same
vibrating frequencies, but have different material properties are
called isospectral systems. Isospectral systems are of great inter-
est in mechanics as they yield alternative usable designs. The
existence of isospectral systems also proves that a system cannot
be uniquely identified from its spectrum.

1.1. Isospectral spring–mass systems

Examples of discrete isospectral systems are in-line spring–
mass systems. A schematic of a 2-DOF spring mass system is

shown in Fig. 1 , where m1,m2 are the masses and k1,k2 are the
spring constants of the springs. Let us consider one such 2-DOF
system (System-A) [1] where the values of masses m1 and m2, and
spring constants k1 and k2, and the natural frequencies of System-
A (o1 and o2) are tabulated in Table 1. Similarly, let us consider
one more system (System-A0 ) where m01 and m02 are the masses,
k01 and k02, are the spring constants and o01 and o02 are the natural
frequencies, whose values are tabulated in Table 1. From Table 1,
we can see that both System-A and System-A0 have the same
frequency spectrum as o1 ¼o01 and o2 ¼o02. Therefore, System-A

and System-A0 are isospectral.
Gladwell [5] described four ways to form in-line spring mass

systems isospectral to a given one. Gladwell [6] also considered a
discrete model of a vibrating cantilever beam, and presented two
procedures for finding families of such beams, isospectral to a
given one. Gottlieb [7,8] studied isospectral vibrating strings with
discontinuous coefficients. All these studies addressed discrete
models of vibrating beams.

Borg [9] studied isospectral systems corresponding to a vibrating
string with continuous coefficients (second order governing equa-
tion). Gottlieb [10] analyzed the non-uniform Euler–Bernoulli beam
equation and gave seven classes of non-uniform beams isospectral
to the given uniform beam with different boundary conditions.
Subramanian and Raman [11] generalized Gottlieb’s method for
tapered beams. However, studies on isospectral systems have not
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addressed rotating beams. In this study, we seek to find non-
uniform beams that are isospectral to a given rotating beam. Such
beams, if they exist, have important applications in the dynamics of
rotating systems.

Rotating beams serve as a useful mathematical model to simulate
vibration of helicopter blades, wind turbines, long flexible rotating
space booms, turbo-machinery blades, etc. A rotating mechanical
system can suffer from high vibration, if its natural frequencies
coincide with multiples of the rotation speed. Therefore, an accurate
determination of the frequencies is an important aspect in rotating
blade design. The natural frequencies and mode shapes can be
determined using an approximation scheme such as the Rayleigh–
Ritz method [12], Galerkin method [13], finite element method
[14–19], differential transform method [20,21] or the dynamic stiff-
ness method [22]. Hodges and Rutkowski [23] analyzed the out of
plane vibrations of a rotating beam using a finite element method of
variable order. Wright et al. [24] presented an accurate solution for
the mode shapes of a beam attached to a rotating hub using the
method of Frobenius. Storti and Aboelnaga [25] listed the classes of
beams which admit hypergeometric solutions to the mode shape
equation. Naguleswaran [26] solved the mode shape equation using
the method of Frobenius. Low [27] developed an algorithm for solving
frequency equations for a cantilever double-span non-rotating beam
and a uniform rotating beam. Thus, we see that considerable amount
of research has been done on the models of a rotating beam.

Experimental determination of rotating beam frequencies can be
difficult. For example, Senatore [28] experimentally determined the
frequencies of a rotating beam, using lumped parameter axial loads
on a uniform non-rotating beam, in order to simulate an approx-
imation of the centrifugal force field, acting on the rotating beam.
However, this method could not predict exactly the first natural
frequency and mode shape due to the lumped axial loads. Hence, it
is interesting to see, if we can find any non-rotating beam which is
isospectral to the uniform rotating beam. It is important to take into
account the exact centrifugal force acting on the rotating beam. The
reasons for obtaining isospectral beams are the following. (a) It is
difficult to conduct experiments on rotating beams to obtain its
natural frequencies. If we find an isospectral non-rotating beam, one
can easily conduct experiments on the non-uniform beam, to obtain
the natural frequencies. (b) Such isospectral beams can provide
insight by predicting the stiffening effect of the centrifugal force. (c)
Provide benchmark problems for finite element analysis.

In this paper, we find non-rotating beams with continuous
mass and flexural stiffness distributions, that are isospectral to a
given uniform rotating beam. The mass and stiffness functions of
non-rotating beams, isospectral to a uniform beam rotating
at different speeds are derived. We note that for high rotat-
ing speeds, the derived mass and stiffness functions of the

non-rotating beam are not physically realizable, owing to stiffen-
ing effect of the centrifugal force. In such situations, if we attach a
torsional spring, of a spring constant KR, at the free end of the
non-rotating beam, the obtained mass and stiffness functions
become physically realizable. We also show numerically that the
frequencies of the non-rotating beam obtained using the finite
element method (FEM) are the exact frequencies of the uniform
rotating beam. This confirms numerically that the non-uniform
beam obtained in this method is isospectral to the given uniform
rotating beam. We also provide an example of realistic beams
having a rectangular cross-section to show a physically realizable
application of our analysis.

2. Mathematical analysis

In this section, the mathematical formulation of the problem is
presented. The governing differential equation for the transverse
free vibrations V(Z) of a uniform rotating beam (Fig. 2) of length L,
stiffness EI0 and mass M0 rotating with an angular speed O is
given in [23] as:
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We introduce a non-dimensional variable z¼ Z=L so that the
above equation can be rewritten as
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where Z is the non-dimensional frequency given by
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and l is the non-dimensional rotation speed given by

l¼O
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M0L4=EI0

q
ð4Þ

Similarly, the governing equation for the out of plane free
vibrations YðXÞ of a non-uniform non-rotating Euler–Bernoulli
beam (Fig. 3), which is isospectral to the rotating beam is given by
[29] as

d2

dX2
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" #
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where EI(X) is the flexural stiffness , M(X) is the mass/length, L is
the length of the beam, which is same as that of the uniform
rotating beam (L ¼ LÞ. Now, we introduce non-dimensional vari-
ables f , m and x as

f ðxÞ ¼
EIðXÞ

EI0
, mðxÞ ¼

MðXÞ

M0
, x¼

X

L
ð6Þ

Eq. (5) can be rewritten as

ðf ðxÞY 00Þ00 ¼ Z2mðxÞY , 0rxr1 ð7Þ

Here, the notation Y 0 and Y 00 represent the first and the second
derivatives respectively of Y w.r.t x. The transformation, which

Fig. 1. Schematic of a 2DOF spring–mass system.

Table 1

Material and spectral properties of System-A and System-A0 .

System-A System-A0

m1 6.25 kg m01 1.286 kg

m2 4 kg m02 1 kg

k1 92.5 kN/m k01 15.857 kN/m

k2 20 kN/m k02 6 kN/m

o1 62.2 rad/s o01 62.2 rad/s

o2 138.3 rad/s o02 138.3 rad/s

Fig. 2. Schematic of a uniform rotating beam.
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