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a b s t r a c t

It is shown that the electrical current that may be obtained from a nanoscale electrochemical system is
sensitive to the dimensionality of the electrode and the density of states (DOS). Considering the DOS of
lower dimensional systems, such as two-dimensional graphene, one-dimensional nanotubes, or zero-
dimensional quantum dots, yields a distinct variation of the current-voltage characteristics. Such aspects
go beyond conventional Arrhenius theory based kinetics which are often used in experimental interpre-
tation. The obtained insights may be adapted to other devices, such as solid-state batteries. It is also indi-
cated that electron transport in such devices may be considered through electron tunneling.

� 2018 Elsevier B.V. All rights reserved.

1. Introduction

The use of nanostructured materials as electrodes in energy
storage devices [1], such as batteries and electrochemical capaci-
tors [2], is typically based on considerations related to a large ratio
of the surface area to the volume. An optimal packing of the nanos-
tructures, spanning scales and dimensionality, is necessary to
ensure both a large mass-based as well as volume-based energy
density, as well as the seamless passage of a large magnitude of
concomitant electrical current. Considering the relevance of
multi-dimensional current passage, careful attention needs to be
paid to the relevant mode of charge transfer both within the elec-
trode, as well as from the electrode to an electrolyte. Generally,
electron/carrier transfer occurs when filled states on one side and
empty states on the other are aligned [3]. Such an alignment is
shifted by an applied voltage difference, i.e., the overpotential,
between the electrode and electrolyte. The relationship is reversi-
ble, and may be observed experimentally through techniques such
as chronoamperometry [4–6]. While a theory of electron transfer
has been posited based on perturbation theory [7], such formula-
tions typically consider a constant density of states [8] (DOS) in
the electrode and a continuum of energy states in the electrolyte
[3]. However, in nanostructures, the DOS is highly variable,

e.g., as related to the quantum capacitance CQ [9] in single-layer
graphene [10], and non-smooth variations/oscillations of the elec-
trochemical rate constant were predicted in one-dimensional car-
bon nanotubes, due to chirality dependent DOS [8]. It is the aim
of this paper to clarify such foundational aspects, probe alternate
viewpoints, and interpret experimental results.

Conventional models, e.g. Butler-Volmer (BV) [4], Marcus-Hush
(MH) [11–13], or Marcus-Hush-Chidsey (MHC) [5,14] kinetics,
express traditional electrode battery operation through chemical
reaction dynamics, which is chiefly considered through the reac-
tion rate constant k (1/s). These models employ phenomenological
constants to relate to the underlying electrochemical processes.
This approach is well suited for traditional electrode materials
but may not be appropriate for nanomaterials. For instance, in
the BV model, a and b are electron transfer coefficients for the
chemical reaction (backward and forward, respectively), where
I = I0 (e�ag + ebg) and a + b = 1, where g is the overpotential. They
represent the ease of reducing the potential barrier for the
backward and forward chemical reaction, respectively. In the
MH/MHC models, the reorganization energy k (eV) is taken as a
measure of the configurational change related to the species
undergoing the redox (oxidation or reduction) reaction. The Chid-
sey formalism [5] considers electron occupancy by invoking the
Fermi-Dirac distribution, i.e., with f(E) = 1/(exp[(E � EF)/kBT] + 1),
with electron energy E, Fermi energy EF, and thermal energy kBT.
For metallic electrodes, implicitly assuming constant DOS q
(1/eV) is reasonable. Under this assumption, k saturates when
|g| > k/e, where e is the elementary charge.
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2. Analytical representation of current

However, such an assumption may be unsuitable for nanostruc-
tured electrodes. Recent experimental k � g characteristics for
single-layer graphene (SLG) electrodes [6,14] do not saturate, and
instead monotonically increase with g. A better understanding of
such aspects is achieved below by introducing an energy-
dependent DOS. The details of this new theory will be presented
elsewhere [15].

We first consider the relation between the k and an observed
electrical current I (A) to reconcile the experimental data with
the energy-dependent DOS theory. k is the net chemical reaction
rate for a redox reaction involving oxidized O and reduced R ion
species as in O + e� � R, and is often experimentally determined
[4–6] as a time decay constant. For such a reaction,

I ¼ FA½kf CO � kbCR�; ð1aÞ
where CO and CR (mol/m2) are the molar concentrations of the O and
R species, respectively, and kf and kb (1/s) are the forward and back-
ward reaction rate constants, respectively. F (C/mol) is the Faraday
constant, and A (m2) is the electrode-electrolyte contact surface
area. For the determination of kf or kb alone, large negative or pos-
itive g is used, whereby Eq. (1a) reduces to

I ¼ en2DAk; ð1bÞ
where n2D (1/m2) is the area density of the relevant ion species and
k = kf or kb. The nanostructured experimental data may thus be
written equivalently in terms of k or I.

When considering charge transfer through electron transport, I
is defined as

I ¼ eAnv ; ð2aÞ
where n (1/m3) is the electron carrier density and v (m/s) is the
electron velocity. The shift from k to v allows us to discuss spatial
coordinates. However, such a specific form is relevant for current
flow through a homogeneous material. I from the electrode to the
electrolyte (or vice versa) may be broadly described through an
equation of the form

I ¼ eAnvH; ð2bÞ
withH as the tunneling probability of the electrons participating in
the redox reaction [16,17].

Considering Eq. (2b) in more depth, it is necessary to use both
f(E) and the DOS for both the electrode and the electrolyte to deter-
mine A, n, and v, as well as the coefficient from Fermi’s Golden Rule
to determine v and H [18–21]. Consequently,

Ilt ¼ e
Z

½f eld � A‘D3D�2p�h M2½ð1� f rdxÞ � q�dE; ð3aÞ

Irt ¼ e
Z

½ð1� f eldÞ � A‘D3D�2p�h M2½f rdx � q�dE: ð3bÞ

Here, Ilt represents left-going current (right-going electrons)
and Irt represents right-going current (left-going electrons). The
equation explicitly considers the electrode DOS D(E) (1/(eV m3))
and occupancy probability feld (E) with Fermi energy EF, and the
electrolyte DOS (integrated over volume) q(E) (1/eV) and occu-
pancy probability frdx(E) with redox energy Erdx. Depending on
the dimensionality of D, a spatial normalization representing the
active electrode region is multiplied, e.g. a volume A‘ (3D), an area
A (2D), a length ‘ (1D), or nothing (0D), such that the normalization
times D has units of 1/eV. ⁄ (eV s) is the Planck constant, and the
matrix element of interaction M (eV) couples the electrode and
electrolyte energy levels, smaller in magnitude compared to the
level broadening, and hence considered to be relatively energy
independent [22]. The electrolyte properties and matrix element

together represent the Fermi’s Golden Rule, which describes elec-
tron transfer rate. Moreover, for the occupancy probability distri-
bution, the Fermi-Dirac distribution was considered over the
Boltzmann distribution for both electrode and electrolyte to repre-
sent the occupancy of the states, and implicitly considers electron
– electrolyte interactions.

Typically, q may be considered through a Gaussian:

qðDEÞ ¼ q0 exp½�ðDEÞ2=ð4kkBTÞ�. The DE is related to the deviation
of a redox species electron energy from the most probable energy,
corresponding to say, that for reduction (red) or oxidation (ox), i.e.,
DE = DEred (= Ered � Ered

o ) or DE = DEox (= Eox � Eox
o ). The electrolyte

DOS is represented through two peaks for the red and ox levels,
which may be correlated to electron affinity and ionization energy,
with a range of energies and corresponding states. Moreover, the
possibility of a solid electrolyte may be easily understood through
considering the q of a solid as well as replacing Erdx with another

Fig. 1. (a) The consideration of electrode dimensionality of nanoscale electrodes,
together with electrode-electrolyte interactions in a typical electrochemical system
(e.g., a battery or capacitor), yields novel electrokinetics. a and b are electron
transfer coefficients for the voltage, most often used in the Butler-Volmer model;
a + b = 1. The consequent electrical currentIwith respect to an overpotential g (with
the standard redox potential as a reference) and normalized to Io, the current at g =
0, is due to the mutual overlap of the carrier density from the electrode with the
electrolyte. (b) The product (right) of the electrode Fermi-Dirac function feld(E) (left)
and DOS D(E) (middle). D can be converted to units of eV�1 by multiplying electrode
volume for a 3D material. (c) The product (right) of the reverse of the electrolyte
Fermi-Dirac function 1 � frdx(E) (left) and DOS q(E) (middle). (d) ln |I/I0|, represented
by the convolution (right) of feld D (left) and (1 � frdx) q (middle).
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