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a b s t r a c t

Ghosh, Berkowitz and Parr designed a thermodynamical transcription of the ground-state density func-
tional theory and introduced a local temperature that varies from point to point. The theory, however, is
not unique because the kinetic energy density is not uniquely defined. Here we derive the expression of
the phase-space Fisher information in the GBP theory taking the inverse temperature as the Fisher
parameter. It is proved that this Fisher information takes its minimum for the case of constant temper-
ature. This result is consistent with the recently proven theorem that the phase-space Shannon informa-
tion entropy attains its maximum at constant temperature.

� 2018 Elsevier B.V. All rights reserved.

1. Introduction

The role of Fisher information [1] in quantum mechanics and
density functional theory was first emphasized by Sears, Parr and
Dinur [2] more than twenty years ago. They studied the relation-
ship between the quantum mechanical kinetic energy and the
Fisher information.

Later, using the principle of extreme physical information the
Schrödinger equation [3–5], the Euler equation [6] and the Kohn-
Sham equations [7] were derived. Fisher information has been
applied among others in studying atoms and molecules [8–21].

The ground-state density functional theory was reformalized as
’thermodynamics’ by Ghosh, Berkowitz and Parr [22]. The phase-
space distribution function maximizing the phase-space Shannon
information entropy was derived. They obtained a local Maxwell-
Boltzmann distribution function and introduced the concept of
the local temperature. The theory has several applications and
extensions [23–43]. Among others, the local thermodynamic for-
malism was extended to ensembles of excited states [48] and
ensemble local temperature was defined.

The Ghosh-Berkowitz-Parr theory is not unique, because one
can apply several expressions for the kinetic energy density. There-
fore, the local temperature is not unique either. The ambiguity of
the local kinetic energy and temperature was addressed by several
authors [44–47]. In [46] the N-particle quasiprobability distribu-
tion maximising the Shannon limit of the Tsallis entropy was pro-
posed, though it was not worked through. It has recently been
proved [49] that it is possible selecting the kinetic energy density

so that the local temperature be a constant for the whole system
under consideration. In this case the kinetic energy density is pro-
portional to the electron density and the temperature is propor-
tional to the kinetic energy. Furthermore, the kinetic energy
density corresponding to the constant temperature, maximizes
the Shannon information entropy. A similar result has been
obtained for the ensemble extension of the theory [50].

Here we derive the expression of the Fisher information in the
Ghosh-Berkowitz-Parr theory taking the inverse temperature for
the Fisher parameter. Then we prove that this Fisher information
takes its minimum for the case of constant temperature. That is,
we arrive at the remarkable result that at constant temperature
the phase-space Shannon information entropy takes its maximum
and the phase-space Fisher information has its minimum. These
simple and interesting theorems give a deeper insight into the
Ghosh-Berkowitz-Parr theory.

The following section provides the summary the Ghosh-
Berkowitz-Parr theory. Section 3. presents the new theory with
the Fisher information. The last section is devoted to examples
and discussion.

2. Thermodynamical transcription of density functional theory

In this section the ‘‘thermodynamical” transcription [22] is
summarized. In the density functional theory we study a system
of N electrons moving in a local external potential vðrÞ. According
to the Hohenherg-Kohn theorems [51] the ground-state electron
density nðrÞ determines vðrÞ up to a trivial additive constant and
the ground-state total energy takes its minimum at the true den-
sity. Moreover, there exists a non-interacting, Kohn-Sham system,
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where the electrons move independently in a common, local Kohn-
Sham potential.

Introduce a phase-space distribution function f ðr;pÞ with the
properties:Z

dpf ðr;pÞ ¼ nðrÞ; ð1ÞZ
drnðrÞ ¼ N ð2Þ

andZ
dp

p2

2m
f ðr;pÞ ¼ tsðrÞ: ð3Þ

m is the electron mass. The non-interacting kinetic energy den-
sity tsðrÞ integrates to the non-interacting kinetic energy Ekin:

Ekin ¼
Z

drtsðrÞ: ð4Þ

The marginal conditions (1)–(3) are satisfied by a number of
distribution functions. Note that in the GBP theory it is not
required that the phase-space distribution function integrates to
the momentum density [52,53].

Take the distribution function that maximizes the Shannon
information entropy

S ¼
Z

drsðrÞ; ð5Þ

sðrÞ ¼ �k
Z

dpf ðln f � 1Þ ð6Þ

subject to the constraints above, that is, the correct density (Eq. (1))
and the correct non-interacting kinetic energy (Eq. (3)) are fixed. k
is the Boltzmann constant. The maximizing distribution function is
a local Maxwell-Boltzmann type function:

f ðr;pÞ ¼ e�aðrÞe�bðrÞp2=2m: ð7Þ

aðrÞ and bðrÞ are r-dependent Lagrange multipliers. Substituting the
distribution function (7) into the constraint (3) we are led to

tsðrÞ ¼ 3
2
nðrÞ
bðrÞ : ð8Þ

Introducing the local temperature TðrÞ with the definition

bðrÞ ¼ 1
kTðrÞ ; ð9Þ

the non-interacting kinetic energy density takes the form of the
ideal gas expression:

tsðrÞ ¼ 3
2
nðrÞkTðrÞ ð10Þ

and the distribution function can be rewritten as

f ðr;pÞ ¼ 2pmkTðrÞ½ ��3=2nðrÞe�p2=2mkTðrÞ: ð11Þ
The local temperature is expressed with the kinetic energy den-

sity and can vary from point to point. It is important to emphasize
that the local temperature is not uniquely defined as the kinetic
energy density is not unique. Adding a term that integrates to zero
to the kinetic energy density results another kinetic energy density
with the same kinetic energy but different local temperature. Usu-
ally the gradient form of the kinetic energy density is applied,
because it is everywhere positive, though any form resulting the
kinetic energy can do.

3. Fisher information

The Fisher information [1] measures the information that we
can obtain for the parameter h of the distribution function gðxjhÞ.
It is defined as

IgðhÞ ¼
Z @gðxjhÞ

@h

h i2
gðxjhÞ dx: ð12Þ

Consider now the phase-space distribution function normalized
to 1:

.ðr;pÞ ¼ 1
N
f ðr;pÞ ¼ 1

N
bðrÞ
2pm

� �3=2
nðrÞe�bðrÞp2=2m ð13Þ

and take b for the parameter h of the distribution function. The
phase-space Fisher information is now defined as

IðbÞ ¼
Z @.ðr;pjbÞ

@b

h i2
.ðr;pjbÞ drdp: ð14Þ

Note that it is a generalization of the original definition as b in
the GBP theory is a function of r. Substituting Eq. (13) into Eq. (14)
and integrating for the momentum, the phase-space Fisher infor-
mation takes the form

IðbÞ ¼ 3
2N

Z
nðrÞ

ðbðrÞÞ2
dr: ð15Þ

We can express the phase-space Fisher information with the
non-interacting kinetic energy density ts instead of b:

IðtsÞ ¼ 2
3N

Z ðtsðrÞÞ2
nðrÞ dr: ð16Þ

Now, we minimize the Fisher information (16) under the condi-
tion that the kinetic energy Ekin is fixed:

eI ¼ 2
3N

Z ðtsðrÞÞ2
nðrÞ drþ n Ekin �

Z
tsðrÞdr

� �
: ð17Þ

n is the Lagrange multiplier. Note that a given ground-state Kohn–
Sham problem is considered, therefore the density n(r) is fixed.
The variation leads to

4
3N

ts
n
� n ¼ 0: ð18Þ

Using Eqs. (9) and (10) it can be rewritten as

b ¼ 2
Nn

: ð19Þ

As the Lagrange multiplier n is a constant, the inverse tempera-
ture b (and the temperature T) is also constant.

Because of Eq. (4) the value of the temperature is given by

1
b
¼ kT ¼ 2

3N
Ekin: ð20Þ

That is, the kinetic energy density for which the Fisher informa-
tion is minimum gives constant temperature. Furthermore, the
kinetic energy density is proportional to the electron density and
the temperature is proportional to the kinetic energy. Previously,
we found that the maximum of the phase-space Shannon informa-
tion entropy was also obtained for constant temperature [49]. It is
remarkable that both the minimum phase-space Fisher informa-
tion and the maximum phase-space Shannon information entropy
are attained at constant temperature.
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