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a b s t r a c t

Free vibration of FGM box beam is investigated by the formulation of an exact dynamic stiffness matrix

on the basis of first-order shear deformation theory (FSDT). Primary and secondary torsional warping,

shear and bending deformations are incorporated in the one-dimensional beam model. Material

properties of the beam are assumed to be graded across the wall-thickness. A recent function

characterising the distribution of shear stresses is introduced. The present model is validated by

comparison with finite element analysis for various boundary conditions. Good correlation exists

between the values of Abaqus analysis and those calculated with the present method.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Composite box beams have found increasing applications in a
variety of engineering fields such as aerospace, civil, and marine
during the recent decades. It becomes an obvious trend that more
and more this type of beams will be used in the design of
structural components such as aircraft wings, helicopter rotor
blades, robot arms, bridge decks and other structural elements in
civil constructions. However, the use of the composite materials
was limited by the high temperature until the appearance of new
material known as functionally graded material (FGM). Due to its
inherent smooth and continuous variation of material properties
along some preferred direction, many scientists are attracted by
the FGM. Recently, El Meiche, et al. [1] presented buckling and
vibrations analysis of simply supported rectangular FGM sand-
wich plate, a new hyperbolic shear deformation theory was
introduced in their model in order to derive the governing
equations by applying Hamilton’s principle. Hosseini-Hashemi,
et al. [2] developed exact closed-form solutions for dynamic
analysis of rectangular FGM plates with different boundary
conditions on the basis of the FSDT, they investigated the
influence of the volume fraction and Geometry on the free
vibration characteristics of FGM plates. Pradhan and Murmu [3]
used modified differential quadrature method (MDQM) based on
Euler–Bernoulli beam theory to solve governing differential
equations of FGM sandwich beam under variable elastic foundations,

this study was carried out with various temperature distributions,
volume fractions, variable Winkler foundation modulus and
normalized core thickness of FGM beams. Ke et al. [4] and
Kitipornchai et al. [5] focused their attention to the study of
postbuckling response and nonlinear vibration of hinged–hinged
clamped–hinged clamped–clamped FGM beams containing an
open edge crack, the Ritz method was employed to derive their
nonlinear governing equations. Aydogdu and Taskin [6] analysed
free vibrations of simply supported FGM beams with comparative
study between the classical beam theory (CBT), higher-order
shear deformation theory (HSDT) [7,8] and FSDT. It is observed
from the literature that there are many interesting approaches to
analyse the behavior of classical anisotropic box beams. Kim and
White [9,10], McCarthy and Chattopadhyay [11] developed three-
dimensional composite thin and thick-walled box beams theories
under static loads, the governing equations for three types of
specially tailored layups with specialised elastic couplings known
as the cross-ply layup configuration, the circumferentially asym-
metric stiffness (CAS) configuration, and the circumferentially
uniform stiffness (CUS) configuration are considered in their
works, finally, the results have been validated with experimental
data [12], analytical predictions [13] and refined beam FEA [14].
Subsequently, Volovoi et al. [15] evaluated most composite beams
theories. Pluzsik and Koll�ar [16] developed a theory for ortho-
tropic box beams subjected to a static sinusoidal load and
compared it with that of Vlasov [17] which is more efficient for
open section isotropic beams effects of restrained warping and
shear deformation were investigated with numerical results. Vo
and Lee [18] developed a finite element model to solve the
problem of flexural–torsional coupled vibration of thin-walled

Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/ijmecsci

International Journal of Mechanical Sciences

0020-7403/$ - see front matter & 2012 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.ijmecsci.2012.12.001

n Corresponding author. Tel.: þ213 776364598.

E-mail address: zianenoureddine@yahoo.fr (N. Ziane).

International Journal of Mechanical Sciences 66 (2013) 273–282

www.elsevier.com/locate/ijmecsci
www.elsevier.com/locate/ijmecsci
http://dx.doi.org/10.1016/j.ijmecsci.2012.12.001
http://dx.doi.org/10.1016/j.ijmecsci.2012.12.001
http://dx.doi.org/10.1016/j.ijmecsci.2012.12.001
mailto:zianenoureddine@yahoo.fr
http://dx.doi.org/10.1016/j.ijmecsci.2012.12.001


composite box beams with arbitrary lay-ups under a constant
axial force, the effects of axial force, fiber orientation and modulus
ratio on the natural frequencies, load-frequency interaction
curves and corresponding vibration mode shapes were investi-
gated with numerical examples. However, the literature on the
analysis of the FGM box beams is very few. Librescu et al. [19]
studied the behavior of FGM thin-walled beams at high tempera-
tures, which included instability and vibration analysis along with
the effects of temperature gradients and volume fraction. Piovan
and Machado [20] adopted a second-order non-linear displace-
ment field in order to study the dynamic stability of simply
supported thin-walled box beams made of FGM under an axial
external force, the effects of shear deformation, volume fraction
index and the interaction between forced and parametrically
excited vibrations on the boundaries of the unstable regions have
been investigated but the shear effects across the wall-thickness
was neglected, therefore, the primary purpose of the current work
is to fill this gap for studying the dynamic behavior of FGM box
beam, the primary and secondary torsional warping function
obtained by the author [21] is introduced in displacement fields,
a recent function satisfying the shear-stress-free boundary con-
ditions at top, bottom, left, and right of the box beam [1] is used
to correct shear stresses. A simple Newton’s eigenvalue iteration
method is adopted in the present analysis to determine all the
natural frequencies.

2. Kinematics

Consider a symmetric FGM box beam of length L, minimum
cross-sectional dimension c, maximum cross-sectional dimension d

and wall thickness h (see Fig. 1). The Cartesian coordinate system (x,
y, z) and the curvilinear system (x, s, n) are used. The coordinate s is
measured along the tangent to the middle surface in a counter-
clockwise direction, while n is the coordinate perpendicular to the s

coordinate. The origin of the coordinates is set at the center of beam
cross-section. The properties are graded along the wall-thickness h

and depend only on the variable n.

The power law is given by

E nð Þ ¼ Et2Ebð Þ½ n=h
� �

þ 1=2
� �

�pþEb ð1aÞ

r nð Þ ¼ rt2rb

� �
½ n=h
� �

þ 1=2
� �

�pþrb ð1bÞ

where Et and Eb denote values of the elasticity modulus while rt

and rb are mass density at n¼h/2 and n¼�h/2, respectively and
p is a variable parameter which dictates the material variation
profile through the thickness.

To develop the present model, a number of assumptions are
stipulated:

(a) The beam cross-sections are assumed rigid in their own
planes.

(b) Transverse shear stresses vary parabolically across the mini-
mum and maximum cross-sectional dimensions.

(c) Torsional primary and secondary warping are included in this
formulation.

(d) This model is developed in the context of small deformations
within linear elasticity.

(e) The Poisson’s coefficient n is assumed to be constant.

In general, the displacements, u, v and w of any generic point
on the profile section in the x, y and z directions, respectively, may
be expressed as

u x,y,z,tð Þ ¼ u0 x,tð Þ2yfy x,tð Þ2zfz x,tð Þ2½cp y,zð Þþcs y,zð Þ�y0 x,tð Þ

ð2aÞ

v x,z,tð Þ ¼ v0 x,tð Þ2zy x,tð Þ ð2bÞ

w x,y,tð Þ ¼w0 x,tð Þþyy x,tð Þ ð2cÞ

where u0, v0 and w0 are the mid-plane displacements in the x, y,
and z directions, while the variables fy, fz and y denote the
rotations about the z, y and x axes, respectively. The superscript
primes denote the partial derivatives with respect to x.

The primary and secondary torsional warping functions cp and
cs are replaced by that of [21] in Eq. (2d).

c y,zð Þ ¼cp y,zð Þþcs y,zð Þ

¼�yzþ
8d2

p3

�
X1
i ¼ 0

sin 2iþ1ð Þpyð Þ=d
� �

sinh 2iþ1ð Þpzð Þ=d
� �

sin 2iþ1ð Þpð Þ=2
� �

2iþ1ð Þ
3cosh 2iþ1ð Þpcð Þ=2d

� �
ð2dÞ

The strains associated with the displacements in Eq. (2) are

exx ¼
@u

@x
¼ u00�yf0y�zf0z�cy

00
ð3aÞ

gxy ¼
@u

@y
þ
@v

@x
¼ v00�fy� z�

@c
@y

� �
y0 ð3bÞ

gxz ¼
@u

@z
þ
@w

@x
¼w00�fzþ y�

@c
@z

� �
y0 ð3cÞ
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Fig. 1. Geometry and material variation of the FGM box beam.
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