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a b s t r a c t

We discuss the method of linearization and construction of perturbation solutions for the Föppl–von

Kármán equations, a set of non-linear partial differential equations describing the large deflections of thin

flat plates. In particular, we present a linearization method for the Föppl–von Kármán equations which

preserves much of the structure of the original equations, which in turn enables us to construct

qualitatively meaningful perturbation solutions in relatively few terms. Interestingly, the perturbation

solutions do not rely on any small parameters, as an auxiliary parameter is introduced and later taken to

unity. The obtained solutions are given recursively, and a method of error analysis is provided to ensure

convergence of the solutions. Hence, with appropriate general boundary data, we show that one may

construct solutions to a desired accuracy over the finite bounded domain. We show that our solutions agree

with the exact solutions in the limit as the thickness of the plate is made arbitrarily small.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The Föppl–von Kármán equations, a set of non-linear partial
differential equations describing the large deflections of thin flat
plates, read
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where w¼w(x,y) is the out of plane deflection, F¼F(x,y) is the Airy
stress function, E is Young’s modulus, h is the thickness of the
plate,

D¼
Eh3
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is called the flexural (or, cylindrical rigidity, or, bending stiffness,
in various literature) of the plate, n is Poisson’s ratio, and P is the
external normal force per unit area of the plate. Furthermore, r4

denotes the biharmonic operator
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There is a long history to these equations (see, e.g., [1–4]).
While the numerical and experimental study of these equations
has been well represented in the literature, few analytical results
have been reported. Chen and Hutchenson [5] and Huang et al. [6]
recently conducted analysis on the equations, under certain
specific assumptions and special cases. Regarding the buckling
of the plate, Audoly [7] performs a weakly-non-linear analysis
above the buckling threshold, and the results are compared to
numerical simulations. Analytical solutions in the case of the
straight-sided blister governing by the Föppl–von Kármán equa-
tions is given in [8–10]. Mathematically, such results correspond
to an infinite strip with a sinusoidal profile. Further results in the
form of sinusoidal functions are given for the herringbone pattern
in [11,12]. From a purely mathematical point, the Föppl–von
Kármán equations have been studied by Knightly in [13], who
established a priori estimates and a global existence theorem, and
furthermore showed that for small data the solution is unique.

Due to the fact that the Föppl–von Kármán equations involve
high order derivatives, along with two types of deformations [14],
numerical solutions are typically obtained, as the problem is often
too challenging for analytical methods. However, the Föppl–von
Kármán equations describe the large deformations of a plate, and
hence are of interest to those studying deformations and wrink-
ling of surfaces [3,15–18] or even blistering of such surfaces [19].
For these reasons, a method of obtaining approximate analytical
solutions would be of interest.

Let us normalize appropriately so that we may consider
the Föppl–von Kármán equations over the square domain
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O¼[0,1]� [0,1]. In order to solve the Föppl–von Kármán equa-
tions, we need to impose boundary conditions, and these are
determined by the particular application at hand. Here, we shall
take the boundary conditions describing a clamped edge,
although the method can be applied to the loosely clamped edge,
elevated boundary, and oscillatory boundary conditions, amongst
others. The clamped edge boundary conditions read
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In the present brief paper, we apply the method of homotopy
analysis in order to construct approximate analytical solutions to
the Föppl–von Kármán Eq. (1) subject to clamped edge boundary
conditions (2). In particular, the method allows us to construct
perturbation solutions around the homotopy embedding para-
meter, q, which serves as the perturbation parameter. Then, the
resulting linear equations are solved over the square domain via
Fourier analysis. Importantly, we discuss a manner of error
control involving two convergence control parameters, which
permits us to construct approximate solutions of low order with
minimal error. This is important, as the computation of higher
order terms is computationally intense (due to the fact that the
linear PDEs governing the higher order deformation equations are
biharmonic and inhomogeneous).

2. Linearization and construction of perturbation solutions

In order to construct analytical approximations to the Föppl–
von Kármán Eq. (1) subject to the clamped edge boundary
conditions (2), we will proceed along the lines of the method of
homotopy analysis. See the Refs. [20–27]for details; for brevity
we omit certain detailed discussions which can be found in those
references, and the references therein. The method of homotopy
analysis has recently been applied to the study of a number of
non-trivial and traditionally hard to solve non-linear differential
equations, for instance non-linear equations arising in heat
transfer [28–31], fluid mechanics [22,32–38], solitons and integr-
able models [39–42], nanofluids [43,44] and the Lane-Emden
equation which appears in stellar astrophysics [45–48], to name
a few areas. We shall now apply the homotopy analysis method in
order to obtain approximate solutions to the Föppl–von Kármán
equations. First we outline the method. Then, we demonstrate
how one can obtain the terms in the approximate solutions for
the clamped edge boundary data iteratively. As one obtains more
terms in the approximation, one expects better accuracy in the
solutions. To this end, we discuss exactly how one can study the
error in the approximations using residual errors. We can control
the residual errors by means of convergence control parameters,
which adjust the manner of convergence of the obtained series
solutions. Selecting these parameters appropriately, we can mini-
mize the residual error of a finite term approximation to the
Föppl–von Kármán equations.

First, let us define the auxiliary linear operators

L1½w� ¼Dr4w,L2½F� ¼r
4F, ð3Þ

and then construct the homotopies
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�qc2N2½ŵðx,y,qÞ,F̂ðx,y,qÞ� ð4Þ

where N1 and N2 denote the original non-linear operators
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q is the embedding parameter, both c2 and c2 are the convergence
control parameters (which, in general, shall take different values),
and both ŵðx,y,qÞ and F̂ðx,y,qÞ are the solution functions which are
governed by q. Furthermore, w0(x,y) and F0(x,y) are initial approx-
imations to the solutions, which we take to satisfy the linear
equations resulting from (3). When q¼0, we have the lineariza-
tion, while, for q¼1, we have the original non-linear equations.
Hence, we assume solutions to (1) and (2) of the form

ŵðx,y,qÞ ¼w0ðx,yÞþw1ðx,yÞqþw2ðx,yÞq2þ � � � , ð6Þ

F̂ðx,y,qÞ ¼ F0ðx,yÞþF1ðx,yÞqþF2ðx,yÞq2þ � � � , ð7Þ

thereby treating q as our ‘‘small parameter’’. Substituting (6) and
(7) into the homotopies given in (4), and equating powers of q, we
obtain the higher order deformation equations. The zeroth order
equations read

L1½w0� ¼ P, L2½F0� ¼ 0, ð8Þ

and these are solved subject to the selected boundary conditions
and inhomogeneities. The resulting functions are the initial
approximations. The higher order deformation equations read
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and these are solved subject to homogeneous boundary condi-
tions (so that the only boundary conditions come from the zeroth
order terms). Note that w‘¼0 when ‘¼0,1 or w‘ ¼ 1 if ‘Z2. Note
also that the pressure P enters only into the order zero term for
w0, given in (8). For all higher order terms, governed by (9), only
the non-linearities come into play. This is one benefit of the
homotopy analysis method: inhomogeneities can be captured in
the order zero terms.

We remark that, while somewhat complicated, the operators
L1 and L2 are more representative than other simpler operators we
might have taken. The benefit to selecting such operators lies in
the fact that such operators are representative of the original non-
linear PDEs and, hence, should permit more rapid convergence of
the perturbation solutions. Note that we have not yet needed to
specify boundary conditions: Indeed, the influence of boundary
conditions is on (8), and the recursive relations (9) are the same
for various boundary data. Hence, the method can be employed
for more general boundary conditions than those considered here.

3. Recursive solutions for the clamped edge boundary data

Once the homotopies and linearizations are formulated, reco-
vering the approximate solutions is more or less mechanical. First,
let’s recall that the order zero approximations satisfy (8) subject
to the relevant boundary conditions. Thus, for given boundary
conditions, w0(x,y) is always uniquely determined, while the
natural boundary conditions are always taken in a manner such
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