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a b s t r a c t

Double ionization and double electron attachment equation-of-motion methods, based on linearly
approximated explicitly correlated coupled-cluster singles and doubles [CCSD(F12)] are formulated
and implemented. An extension of double electron attachment operator is introduced for proper account
of short-range correlation effects in states with two additional electrons. Numerical tests for set of doubly
ionized and doubly electron attached states of several molecules have shown a good agreement between
obtained explicitly-correlated results and the corresponding complete basis set limit values already at
double-f level.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

Computational methods, based on the equation-of-motion
coupled-cluster methods (EOM-CC) provide a very convenient
way to calculate quantities related to differential energies, such
as ionization potentials (IP-EOM-CC) [1], electron affinities (EA-
EOM-CC) [2], excitation energies (EE-EOM-CC) [3], double ioniza-
tion potentials (DIP-EOM-CC) [4], double electron attachment
(DEA-EOM-CC) [5] and some related properties [6]. These methods
are related to the Fock-space coupled-cluster (FS-CC) formalism
whose solutions for the S(p,h) sectors of the effective hamiltonian

H ¼ e�bT bHebT , S(0,1) and S(1,0), are equivalent to those of IP-EOM-
CC and EA-EOM-CC. The former are obtained from a more compli-
cated computational procedure, so that today, the EOM route is
preferred. The correspondence, however, ensures exact extensivity
and intensivity of target ionization potentials and electron affini-
ties [7–9], despite the linear CI-like operator for the target state
in EOM-CC, because the Fock space operator is formally an expo-
nential, like in the CC ground. In the case of the S(0,2) and S(2,0),
sectors the results are slightly different between Fock-space
coupled-cluster and DIP/DEA-EOM-CCSD methods. All the EOM-
CC wave functions are pure in spin when based upon a closed shell
reference state, enabling H to be readily described in terms of spin-
free cluster amplitudes. Both FS-CC and DIP/DEA-EOM-CC are
widely used for treatment of multireference problems, like bond
breaking and calculation of excitation energies of systems with
open-shell ground states [10–12]. Also, the calculation of double

ionization potentials are immediately useful to interpret Auger
spectra. Yet another application of DIP-EOM-CC is to the ionization
spectra of doublet radicals, where a closed-shell anion can be used
as a reference state [12]. The excitation spectra of open-shell sys-
tems can be obtained from DEA-EOM-CC calculations using the
corresponding doubly ionized closed-shell reference in the under-
lying CC step [12]. The computational cost of such highly applica-
ble DIP-EOM-CCSD and DEA-EOM-CCSDmethods is proportional to
nocc3nvirt and nvirt3nocc, while the underlying CCSD scheme
scales like nvirt4nocc2, where nocc and nvirt are numbers of occu-
pied and virtual orbitals in the system. Previous studies for excita-
tion energies, electron affinities and ionization potentials have
shown a strong dependence of target quantities upon the quality
of used basis sets [13–16]. In the case of the addition and removal
of two electrons from the system, the ‘differential’ correlation
energies are very large, and the dependence of target double ion-
ization potentials and double electron affinities upon choice of
bases can be even larger than that for IPs and EAs. Indeed, in all
standard basis methods the difference between the calculated cor-
relation energy and the corresponding complete basis set (CBS)

value is proportional to ðLmax þ 1Þ�3 [17], where Lmax is the highest
angular momentum involved in the partial wave expansion. Thus,
obtaining highly-accurate converged results might be computa-
tionally costly.

The use of an explicitly-correlated approach can be an attractive
alternative. After the introduction of even simple linear-r12 [18]
geminals the convergence of the correlation energy goes as
ðLmax þ 1Þ�7 [19]. Consequently, the explicitly correlated coupled-
cluster method developed by Kutzelnigg and Noga [20] has become
an efficient and convenient approach for the calculation of
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molecular systems. Modern implementations of CC-F12 methods
use Kato’s cusp conditions for the definition of geminal amplitudes
(the so-called SP-Ansatz) [21] and utilize short-range Slater gemi-
nals, introduced by Ten-no [22]. A linearly approximated F12 cou-
pled cluster singles and doubles method known as CCSD(F12) that
retains only linear-F12 terms [23], is computationally less expen-
sive than full CC-F12, but provides similar accuracy for target cor-
relation energies. Explicitly-correlated EOM-CCSD schemes have
been presented in the literature for IPs, EAs and excitation ener-
gies, the latter by Köhn [24] in the linear response framework. Also,
the explicitly-correlated treatment of response properties has been
reported recently [25–27]. For the case of excited and electron-
attached states an extended XSP-Ansatz was introduced in order
to describe short-range correlation effects of promoted or attached
electrons [24]. Similarly, if two electrons are attached it is neces-
sary to extend the DEA-EOM-CCSD(F12) attachment operator for
the proper description of the state with two additional electrons.
In this letter we report on the formulation and implementation
of explicitly-correlated DIP and DEA-EOM-CCSD(F12) methods. In
order to estimate the accuracy of the methods developed, test cal-
culations are conducted for DIPs and DEAs of several molecules.

2. Theory

Henceforth, we denote occupied, virtual, virtuals from the com-
plete basis set and general orbitals in a given basis set as ij,. . .,
ab,. . . ;a; b; . . . and pq,. . ., respectively.

2.1. CCSD(F12) model for the neutral state

Within the coupled-cluster (CC) theory the ground-state wave
function of a neutral system has the form

W0 ¼ eð
bT 1þbT 2þ...ÞU0; ð1Þ

where bTn are regular cluster operators and U0 – any single determi-
nant reference, but frequently the ground-state Hartree-Fock deter-
minant. The details of CC theory with the corresponding working
equations have been presented in numerous articles and textbooks.
In this work the coupled cluster singles and doubles (CCSD) neutral-
state wave function will be used:

W0ðCCSDÞ ¼ eð
bT 1þbT 2ÞU0: ð2Þ

The linearly approximated explicitly-correlated extension of
CCSD, known as CCSD(F12) [23] includes an additional operator,bT 0

2 which takes care of short-range correlation effects:

W0ðCCSDðF12ÞÞ ¼ eð
bT 1þbT 2þbT 0

2ÞU0; ð3Þ

The bT 0
2 operator has the form:

T̂ 0
2 ¼ 1

2

X
ijkl

t0ijkl
X
ab

habjf 12jkliÊaibEbj �
X
ab

habjf 12jklibEai
bEbj

 !
: ð4Þ

Here bEpq denote unitary group generators,

bEpq ¼ aþp"aq" þ aþp#aq#: ð5Þ

and f 12 are Slater-type geminals[22]:

f 12 ¼ �1
c
expð�cr12Þ: ð6Þ

Geminal amplitudes are defined according to Kato’s cusp condi-

tions[21]: t0ijij ¼ 3
8 ; t

0ij
ji ¼ 1

8 ; t
0ii
ii ¼ 1

2, while all the remaining t0ijklampli-
tudes are set equal to zero.

2.2. DIP and DEA-EOM-CCSD(F12) methods

Within the DIP-EOM-CCSD(F12) approach the wave function of
a doubly-ionized state has the form:

W2þ ¼ bR2þW0ðCCSDðF12ÞÞ; ð7Þ

where bR2þ can be presented as:bR2þ ¼ bR2þ
1 þ bR2þ

2 ; ð8Þ

bR2þ
1 ¼ 1

2

X
i;j

rijfajaig; ð9Þ

bR2þ
2 ¼ 1

6

X
i;j;k;a

raijkfayaakajaig: ð10Þ

Working equations for the DIP-EOM-CCSD(F12) method can be
obtained by the projection of H onto the proper excitation
manifolds:

hUijj½H; bR2þðkÞ�jU0i ¼ xkhUijjbR2þðkÞjU0i; ð11Þ

hUa
ijkj½H; bR2þðkÞ�jU0i ¼ xkhUa

ijkjbR2þðkÞjU0i; ð12Þ
where Uij and Ua

ijk are doubly-ionized Slater determinants, index k
stands for numbering of doubly-ionized states and xk is the corre-
sponding double ionization potential. Detailed diagrammatic repre-
sentation of these equations can found in Ref. [10]. The explicitly-
correlated version of the Eqs. (11) and (12) has the same form,
but the elements of H will be augmented by terms originating from
geminals[13].There is no contribution of F(12) to the R-equations
for the DIP problem.

The DEA-EOM-CCSD wave function of the target doubly elec-
tron attached state assumes the following form:

W2� ¼ bR2�W0ðCCSDðF12ÞÞ; ð13Þ

and the bR2� operator can be written as:bR2� ¼ bR2�
1 þ bR2�

2 þ bR02�
2 ; ð14Þ

bR2�
1 ¼ 1

2

X
a;b

rabfayaaybg; ð15Þ

bR2�
2 ¼ 1

6
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rabci fayaaybaycaig; ð16Þ
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ð17Þ

Geminal amplitudes in the Eq. (17) are fixed using the known
cusp conditions:

t0iaia ¼ 3
8
; t0iaai ¼

1
8
; ð18Þ

while all the remaining t0iajb and t0iabj amplitudes are set equal to zero.

The working equations for rab and rabci amplitudes have form:

hUabj½H; bR2�ðkÞ�jU0i ¼ xkhUabjbR2�ðkÞjU0i; ð19Þ

hUabc
i j½H; bR2�ðkÞ�jU0i ¼ xkhUabc

i jbR2�ðkÞjU0i; ð20Þ
where Uab and Uabc

i are Slater determinants with two extra elec-
trons and xk is the corresponding two-electron affinity. Detailed
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