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a b s t r a c t

We present here two-electronic model, which describes singlet–triplet interaction 1p� 3Rþ in linear tri-
atomic molecules. The analysis takes into account spin-orbital coupling terms in electronic Hamiltonian,
as well as its symmetry properties. We give the symmetry operators of electronic Hamiltonian including
space operators (acting on electronic coordinates) and matrix operators (acting on electronic spin). We
consider only deformation p-modes and our resulting 5� 5 vibronic matrix describes actual relativistic
pseudo-Renner effect ð1p� 3RÞ � p. The eigenvalues of vibronic matrix (i.e. potential energy surfaces)
have axial symmetry and represented by analytical expressions, include five electrostatic and three
spin-orbital parameters.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

The quality of Born-Oppenheimer adiabatic separation of
nuclear and electronic freedom degrees is determined by the Mas-
sey parameter [1]

n ¼ LDU
V�h

;

where DU is the characteristic adiabatic splitting, L is the coupling-
region length, V is the nuclear velocity.

The values n � 1 means adiabatic regime, n � 1 corresponds to
essentially non-adiabatic behavior.

The splitting DU can be small for several reasons. Two main rea-
sons are: symmetrical configuration of nuclear positions and acci-
dental degeneracy of adiabatic potential energy surfaces. First case
causes the famous Jahn-Teller [2] and Renner [3] effects. The refer-
ences on these subjects include the vast list of publications. Acci-
dental degeneracies are not so wide studied [4].

Present work is devoted to configuration interaction of singlet
Renner states 1p and triplet states 3Rþ; when spin-orbital coupling
is taken into account. We mean here, that Massey parameter nwith
DU ¼ j3Rþ � 1pj can be not large for relevant dynamical situations.

At non-relativistic approach, the potential surfaces of electronic
states 1p and 3Rþ of linear triatomic molecule have different sym-
metry and multiplicity and can intersect [5]. When spin-orbital

coupling is taken into account, the molecular spin and the projec-
tion of orbital angular momentum on the molecular axis are not
conserved, and electronic states, mentioned above are involved
in interaction. Possible resulting intersection of non-relativistic
potentials 1p and 3Rþ, changes to avoided crossing.

In current research, we consider two-electron model of
1p� 3Rþ interaction, taking into account only deformational
p -modes and spin-orbital interactions in electronic Hamiltonian
[6].

Since the functional representation of the resulting vibronic
matrix is determined only by symmetry properties [7], two-
electron model of interaction 1p� 3Rþ can be applied to many-
electron linear triatomic molecules with even number of electrons
and three different atoms. Dependence on the number of electrons.
concerns only the values of constant parameters of vibronic matrix
[8].

The 1p� 3Rþ interaction reveals essentially, when the elec-
tronic states 1p and 3Rþ are separated by small energy interval.
In this case, 1p� 3Rþ interaction is the relativistic pseudo-Renner
effect of ð1p� 3RÞ � p form.

2. The symmetry of two-electronic Hamiltonian

The basic relativistic effect in Renner systems is the spin-orbital
interaction. To consider it, we take the electronic Hamiltonian in

the form of sum of two operators: electrostatic Hamiltonian Ĥes

and spin-orbital interaction Ĥso:
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Ĥ ¼ Ĥes þ Ĥso: ð1Þ
We do not give here the detailed forms for Ĥes and Ĥso, which

are well-known and are presented in the publications [6–10].
If the molecule has linear configuration, then electronic Hamil-

tonian (1) is characterized by the point symmetry group C1v . The

operators of this group, commuting with Hamiltonian Ĥ, have
the form:

Ĝe
z ¼ Ĉ1ðeÞĈ2ðeÞ e1e=2 0

0 eie=2

 !
1

eie=2 0
0 eie=2

 !
2

ð2Þ

Ẑr ¼ r̂ð1Þ
xz r̂

ð2Þ
xz

0 1
�1 0

� �
1

0 1
�1 0

� �
2

; ð3Þ

where ĈiðeÞ is the rotation of i electronic coordinates on the angle e
around z and r̂ðiÞ

xz is the reflection of i electronic coordinates in the
plane xz.

The appearance of matrices in the Eqs. (2) and (3) is caused by
the spin operators (the Pauli matrices) in [6].

Space-matrix two-electronic operators Ĝe
z and Ẑr correspond to

the rotation e around the molecular axis zðĜe
zÞ and to the reflection

in the vertical plane xzðẐrÞ. They do act on the electron coordinates
as well as on the electronic spin operators (Pauli matrices) in elec-

tronic Hamiltonian Ĥ.
Besides space-matrix symmetry operators, the electronic

Hamiltonian Ĥ is characterized by one more symmetry operator

– time-reversal operator T̂ [5,11].

T̂ ¼ 0 �i

i 0

� �
1

0 �i

i 0

� �
2

c:ĉ; ð4Þ

where c:ĉ – is the complex conjugation operator.

The Hamiltonian Ĥ commutes with operator T̂ which is the
antiunitary operator [11]. For the model considered with even-
numbered electrons

T̂2 ¼ þ1 ð5Þ

3. Taylor series expansion of electronic Hamiltonian

It is convenient to perform Taylor series expansion of electronic
Hamiltonian in terms of p-modes using the irreducible representa-

tions of C1v symmetry group. In Table, we give the corresponding
symmetrized combinations up to second order contributions on
p-modes.

Taylor series expansion of electrostatic Hamiltonian has the
form:

Ĥes ¼ Ĥ0 þ Ĥ1 þ Ĥ2 þ . . . ; ð6Þ

where Ĥ0 is nonrelativistic (electrostatic) Hamiltonian of the linear
molecule,

Ĥ1 ¼ Ĥþðp�Þqþ þ Ĥ�ðpþÞq�; ð7Þ

Ĥ2 ¼ Ĥþþðd�Þq2
þ þ Ĥ��ðdþÞq2

� þ Ĥþ�ðrþÞqþq�: ð8Þ

where Ĥ1 and Ĥ2 are the first and the second order contributions in
electrostatic Hamiltonian, and q� are the deformation p-modes
(q� ¼ qx � iqy).

In terms of symmetrized combinations from Table, the Taylor
series for spin-orbital interaction looks as following:

Ĥso ¼ ĥ0 þ ĥ1 þ ĥ2 þ . . . ; ð9Þ
Where

ĥ0 ¼
X
k¼1;2

kĥþðp�Þr̂ðkÞ
þ þ kĥ�ðpþÞr̂ðkÞ

� þ kĥzðr�Þr̂ðkÞ
z

h i
; ð10Þ

ĥ1 ¼
X
k¼1;2

kĥþ
þðd�Þqþr̂

ðkÞ
þ þ kĥ�

�ðdþÞq�r̂ðkÞ
� þ kĥþðrþÞðq�r̂

ðkÞ
þ þ qþr̂ðkÞ

� Þ
h

þkĥ�ðr�Þðq�r̂
ðkÞ
þ � qþr̂ðkÞ

� Þ þ kĥþ
z ðp�Þqþr̂ðkÞ

z � kĥ�
z ðpþÞq�r̂ðkÞ

z

i
;

ð11Þ

ĥ2 ¼
X
k¼1;2

kĥþþ
þ ð/�Þq2

þ þ kĥ��
þ ðpþÞq2

� þ kĥþ�
þ ðp�Þqþq�

h i
r̂ðkÞ

þ
n

þ kĥþþ
� ðp�Þq2

þ þ kĥ��
� ð/þÞq2

� þ kĥþ�
� ðpþÞqþq�

h i
r̂ðkÞ

�

þ kĥþþ
z ðd�Þq2

þ þ kĥ��
z ðdþÞq2

� þ kĥþ�
z ðr�Þqþq�

h i
r̂ðkÞ

z

o
ð12Þ

Each operator coefficient in Taylor series (6–12) is transformed
by irreducible representation and its row which marked as the
argument of the operator. We underline here, that the operator
coefficients of Taylor series are transformed by the irreducible
representations, which are complex conjugated to the irreducible

Table
Symmetrized combinations of normal modes and Pauli matrices.

Order # Symmetry Type Symmetrized combinations

1st orb. 1 p q qþ ¼ qx þ iqy , q� ¼ qx � iqy

2nd orb. 2 rþ qq qþq�
3 d qq q2þ , q

2
�

0th spin-orb. 4, 5 r� r r̂ð1Þ
z , r̂ð2Þ

z

6 p r r̂ð1Þ
þ ¼ ðr̂ð1Þ

y � ir̂ð1Þ
x Þ=2, r̂ð1Þ

� ¼ ðr̂ð1Þ
y þ ir̂ð1Þ

x Þ=2
7 r̂ð2Þ

þ ¼ ðr̂ð2Þ
y � ir̂ð2Þ

x Þ=2, r̂ð2Þ
� ¼ ðr̂ð2Þ

y þ ir̂ð2Þ
x Þ=2

1st spin–spin-orb. 8, 9 k ¼ 1;2 rþ qr q�r̂
ðkÞ
þ þ qþr̂ðkÞ

�
10, 11 k ¼ 1;2 r� qr q�r̂

ðkÞ
þ � qþr̂ðkÞ

�
12, 13 k ¼ 1;2 p qr qþr̂

ðkÞ
z , �q�r̂

ðkÞ
z

14, 15 k ¼ 1;2 d qr qþr̂
ðkÞ
þ , q�r̂ðkÞ

�

2nd spin-orb. 16, 17 k ¼ 1;2 r� q2r qþq�r̂
ðkÞ
z

18, 19 k ¼ 1;2 p q2r qþq�r̂
ðkÞ
þ ;qþq�r̂ðkÞ

�
20, 21 k ¼ 1;2 p q2r q2þr̂ðkÞ

� ;q2�r̂
ðkÞ
þ

22, 23 k ¼ 1;2 d q2r q2þr̂
ðkÞ
z ;�q2�r̂

ðkÞ
z

24, 25 k ¼ 1;2 / q2r q2þr̂
ðkÞ
þ ; q2�r̂ðkÞ

�
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