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a b s t r a c t

A simplified multi-linear stress–strain approach has been used to obtain the closed form nonlinear

moment curvature response for epoxy resin materials. The model consists of constant plastic flow in

tension and compression. The multi-linear stress–strain model is described by two main parameters in

addition to four non-dimensional tensile and six non-dimensional compressive parameters. The main

parameters are modulus of elasticity in tension and strain at the proportional elastic limit point in

tension. The ten non-dimensional parameters are strain at the ultimate tensile stress, maximum strain,

post elastic proportionality stiffness, and post peak strength in the tension model and strain at the

proportionality elastic limit, strain at yield strength point, maximum strain, initial elastic stiffness, post

elastic proportionality stiffness, and post peak strength in the compression model. Explicit expressions

are derived for the stress–strain behavior of the epoxy resins. Closed form equations for moment

curvature relationship are presented. The results of tension, compression, and bending tests using

digital image correlation technique are presented. Load deflection response of flexural three point

bending (3PB) samples could be predicted using the moment curvature equations, crack localization

rules, and fundamental static equations. The simulations and experiments reveal that the direct use of

uniaxial tensile and compressive stress–strain curves underestimates the flexural response. This model

gives an upper bound estimate for flexural over-strength factor.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Epoxy resins are one of the frequent matrix materials in fiber
composites. Mechanical properties (stress–strain relationship)
and progressive failure is still a challenge for researchers. Diffi-
culty of a constitutive law in polymer matrix composites is
mainly due to the characterization of polymer mechanical beha-
vior. The hydrostatic component of stress has a significant effect
on the load deformation response of resins even at low levels of
stress. Hydrostatic stresses are known to affect the yield stress of
polymers; the absolute value of the yield stress in compression is
higher than the ultimate tensile stress. In order to develop a
general model for polymer composite materials, the behavior of
polymer resins under different types of loading has to be under-
stood. Wineman and Rajagopal [1] used a viscoplasticity model to
capture the polymer behavior. Zhang and Moore [2] used the
Bodner–Partom internal state variable model originally developed
for metals to obtain the nonlinear uniaxial tensile response of
polyethylene. By modifying the definitions of the effective stress
and effective inelastic strain rate in the Drucker–Prager yield

criteria, Li and Pan [3], Chang and Pan [4], and Hsu et al. [5]
developed a viscoplasticity approach for the constitutive law of
polymer materials. Gilat et al. [6] used an internal state variable
model to modify the Bodner model to capture the effects of
hydrostatic stresses on the response. In their approach, a single
unified strain variable is defined to represent all inelastic strains.
Jordan et al. [7] modified the original Mulliken–Boyce model [8]
for one dimension to capture the compressive mechanical proper-
ties of polymer composites. The original model is a three dimen-
sional strain rate and temperature dependent model for
thermoplastic polymers. The majority of the parameters were
determined by fitting the model to experimental compressive
data. A piecewise-linear tension and compression stress–strain
relationship was used to study the mechanical behavior of high
performance fiber-reinforced cement composites [9]. Yekani Fard
et al. [10,11] studied the nonlinear mechanical behavior of Epon E
863 using the Digital Image Correlation (DIC) system. Hobbieb-
runken et al. [12], Bazant and Chen [13], Odom and Adam [14],
and Goodier [15] studied the dependency of the failure and
strength on the size effect, stress state, and volume of the body
subjected to stress in epoxy resin polymers. Giannotti et al. [16]
and Vallo [17] used the statistical Weibull analysis approach
and estimated the mean flexural strength to be 40% higher
than the tensile strength for a Weibull modulus greater than 14.
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Yekani Fard et al. [18,19] used an analytical approach to evaluate
the flexural over-strength factor in epoxy resin E 863. They
observed that the flexural strength in 3PB beams with groove
was at least 14% higher than the tensile peak stress at low strain
rates. Flexural over-strength factor is the ratio of the flexural
strength (peak stress) to the ultimate tensile strength (UTS).

In this study, the flexural behavior of a beam is investigated in
an attempt to establish a relationship between the tensile and
compressive stress–strain curves (with constant plastic flow) in
one side and moment curvature response of epoxy resin material
in the other side. In order to correlate tension, compression
stress–strain curves and flexural data, a closed form solution
has been developed to obtain moment curvature response. The
load deflection response for nonlinear materials under determi-
nate static conditions has been developed. Using inverse analysis,
the effect of stress gradient on the multi-linear stress–strain curve
obtained from the in-plane uniaxial tests has been studied.

2. Tension and compression multi-linear stress–strain curve

The multi-linear stress–strain curve for tension and compres-
sion is bilinear up to the peak stress. Fig. 1 shows the tension and
compression stress–strain relationship of epoxy resin materials.
The tension and compression curves are defined uniquely by the
parameters E, ePEL, mt1, mUt,a, o, g, b, c, mco, mc1, and mUc. The
tensile stress at the proportionality elastic point (PEL) is related
empirically to the stress at the ultimate tensile strength (UTS)
point. The ascending part of the tension and compression stress–
strain diagrams consist of two linear parts: 0 to PEL, and PEL to
UTS in tension or PEL to compressive yield stress (CYS) in
compression. The curve after peak strength is idealized as
horizontal with sft and sfc as the post peak sustained stress in
tension and compression respectively. The constant post peak
stress levels (o and c) shows the ability of the model to represent
a continuous (o¼c¼1) or discontinuous stress response. The
post peak response in tension terminates at the ultimate tension
strain level (eUt¼mUt ePEL), and for compression it ends at ultimate
compression strain level (eUc¼mUc ePEL). In the elastic range, the
resin beam in bending could be treated as a bi-modulus material
with different moduli in tension and compression. The tension
and compression stress–strain relationship are defined as shown
in Table 1.

sc, st, ec, and et are compression and tension stresses and
strains, respectively. The ten normalized parameters used in the
definition of the constitutive law are defined by

mc0 ¼
ePEL,c

ePEL
, mc1 ¼

eCYS

ePEL
, mUc ¼

eUc

ePEL
, mt1 ¼

eUts

ePEL
, mUt ¼

eUt

ePEL
ð1Þ

g¼ Ec

E
, b¼

EPEL,c

E
, a¼ EPEL,t

E
ð2Þ

o¼
sf t

sPEL
, c¼

sf c

sPEL
ð3Þ

Using classical beam theory, linear distribution of strain across
the depth is assumed. The stress and strain distribution across a
section of a beam with depth h and width b by imposing
normalized top compressive strain in different cases are shown
in Fig. 2. Normalized heights of compression and tension sub-
zones with respect to beam depth h are shown in Table 2.
Tables 3 and 4 present the normalized stress at the vertices of
the tension and compression sub-zones with respect to tensile
stress at the proportionality limit point. The internal force in each
compression and tension sub-zone of nine stress distribution
cases could be calculated from the stress diagram. The centroid
of the stress in each sub-zone represents the line of action and
moment arm respect to the neutral axis.

3. Closed-form moment curvature response

The development of stress–strain across the section by
increasing the normalized compressive strain is presented in
Fig. 3. Stress–strain develops at least to stage 4 where compres-
sive and tensile failure is possible if lmax¼mUc in case 6, or lmax¼F

in case 4. Moving through different stages in Fig. 3 depends on the
controlling value for lmax. Using the auxiliary points defined in
Table 5, the transition points defined as tpij between different
stages in Fig. 3 could be presented by the following equations.

tp12 ¼Minðmc0,AÞ

tp23 ¼Minðmc0,CÞ or Minðmc1,BÞ

tp34 ¼MinðmUc ,DÞ or Minðmc1,EÞ or Minðmc0,FÞ

tp45 ¼MinðmUc ,GÞ or Minðmc1,HÞ

tp56 ¼MinðmUc ,IÞ

ð4Þ

where indexes i and j refer to origin and destination stages,
respectively. The net force is obtained as the difference between
the tension and compression forces, equated to zero for internal
equilibrium, and solved for the neutral axis depth ratio defined as
k. The expressions of net force in some stages result in more than
one solution for k. Using a large scale of numerical tests covering
possible ranges of material parameters, the solution of k which
yields the valid value 0oko1 was determined and presented in
Table 6. Moment expressions are obtained by taking the first
moment of the compression and tension forces about the neutral
axis. Curvature is calculated by dividing the top compressive
strain by the depth of the neutral axis kh. The closed form
solutions for normalized moment Mi and curvature ji with
respect to the values at the tensile PEL points are presented in
Eqs. (5)–(7) and Table 6.

M¼MPELM0ðl,g,b,a,mc0,mc1,mt1,mUt ,mUc ,o,cÞ ð5Þ

j¼jPELj
0ðl,g,b,a,mc0,mc1,mt1,mUt ,mUc ,o,cÞ ð6ÞFig. 1. (a) Constant flow in tension; (b) constant flow in compression.

Table 1
Multi-linear stress–strain curve.

Stress Definition Domain of strain

st(et)

Eet 0retrePEL

E(ePELþa (et�ePEL)) ePELoetrmt1 ePEL

o E ePEL mt1 ePELoetrmUt ePEL

0 mUt ePELoet

sc(ec)

g E ec 0recrmc0 ePEL

E (g mc0 ePELþb (ec�mc0 ePEL)) mc0 ePELoecrmc1 ePEL

c E ePEL mc1 ePELoecrmUc ePEL

0 mUc ePELoec
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