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a b s t r a c t

Colloidal quantum dots exhibit size-dependent optical properties due to quantum and dielectric confine-
ments at the semiconductor/solvent boundary. To consider both confinement effects, we take a natural
potential well approach that assumes separate potential wells for electron and hole which are sur-
rounded by dielectric media. The potential well depths for electron and hole are set by the band offsets
at the semiconductor/solvent heterojunction. The kinetic energy is calculated using an effective mass
approximation and the electron-hole interaction energy is obtained by taking image charges into
account. For cadmium chalcogenides, resulting transition energies agree well with size-dependent optical
bandgaps from experiments.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

Recent advances in colloidal synthesis allow the preparation of
a wide variety of semiconductor quantum dots that can be used as
emissive materials [1]. The quantum confinement in nanoscale
results in size-dependent optical properties, and the size and shape
of colloidal quantum dots (CQDs) vary with the growth chemistry.
As most CQDs are prepared in organic solvent and covered with
stabilizing ligands, their optical absorption and emission spectra
are typically taken in liquid solution. When an electron-hole pair
is formed in CQDs upon absorption of light, both the electron
and hole are confined by the semiconductor/solvent heterojunc-
tion, and the dielectric mismatch at the semiconductor/solvent
boundary induces image charges of electron and hole. Hence, both
the semiconductor/solvent heterojunction and dielectric boundary
affect the optical properties of CQDs dispersed in solvent.

Various theoretical methods have been used to study the optical
properties of QDs, but mostly without considering the dielectric
boundary [2–10]: The multiband effective mass theory was used
to calculate various properties of CdSe and InAs QDs [2]. A tight-
binding model was utilized to investigate the energy levels of
CdS and CdSe QDs [3,4]. A pseudopotential method was employed
to examine the electronic structure of CdSe QDs [5]. Both the
multiband effective mass theory and the tight-binding method
were applied to compare optical properties of CdS nanocrystals
[6]. The variational calculation was carried out for CuCl QDs [7]

assuming an infinite potential well for both electron and hole,
and for CdS QDs [8] using a semi-finite potential well. The finite
potential well model, which has the same depth for both electron
and hole, was used to calculate the optical properties of CdS [9],
CdE (E = S, Se, Te) and InP QDs [10]. Meanwhile, the dielectric effect
was examined in combination with the quantum confinement
effect in some cases [11–18]: Brus [11] reported the electronic
energy of CdS CQDs using an infinite potential well model by con-
sidering the high frequency dielectric solvation. Bányai et al. [12]
used the Hartree–Fock method to describe the electron-hole inter-
actions in a finite potential well with a dielectric boundary
between CdS CQDs and surroundings. Takagahara [13] utilized
the variational method to examine the dielectric confinement
effects on electron-hole interactions in an infinite potential well.
However, the calculation of self-polarization energy between
charge and self-image charge was problematic due to the singular-
ity at the boundary. Recently, Bolcatto and Proetto [14,15] pro-
posed a smooth dielectric profile between CQDs and
surroundings to avoid the divergence and calculated the energy
levels of GaAs and CdSe CQDs using a semi-finite potential well
model. More recently, the smooth dielectric profile was adopted
in numerical calculations of the electronic states of CQDs assuming
the same finite potential well for both electron and hole with a
dielectric boundary [16,17]. Most recently, it was combined with
the tight-binding method to calculate the self-energies of electron
and hole in colloidal CdSe nanoplatelets surrounded by dielectric
ligand/solvent [18].

In this work, we take a natural potential well approach that
assumes different potential wells for the conduction band electron
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and the valence band hole, which are surrounded by dielectric
media. Potential wells and the dielectric boundary are depicted
in Fig. 1. The potential well depths for the electron (Ve) and hole
(Vh) are determined by the band offsets at the semiconductor/sol-
vent heterojunction. The dielectric constant of QD is treated to be
size-dependent, varying between optical (e1) and static (e0)
dielectric constants, as proposed by Haken [19]. For the calculation
of self-polarization energy, a cosine function is used to smooth the
dielectric discontinuity. Of the semiconductors, cadmium chalco-
genides (CdE, E = S, Se, Te) having a zinc-blende (ZB) structure
are chosen for this study because numerous experimental data
are available on their size-dependent optical properties and the
effective mass approximation assuming a simple parabolic band
structure can be applied to both the conduction and valence bands.
We compare the bandgaps of CdE CQDs from experiments with
theoretical results.

2. Calculational details

The kinetic energy of a particle is calculated using an effective
mass approximation. The Hamiltonian for an electron–hole pair
can be expressed, as given in Eq. (1).

Ĥ ¼ � �h2

2me
r2

e þ Ve � �h2

2mh
r2

h þ Vh þ Vðjre � rhjÞ ; ð1Þ

where �h is the Plank’s constant, me and mh are the effective mass of
electron and hole, respectively, V is the interaction energy between
electron and hole, and |re–rh| is the distance between electron and
hole, where re and rh are the position vector of electron and hole,
respectively. The Schrödinger equation for a particle, either electron
or hole, is given in Eq. (2).

� �h2

2mi
r2

i þ V i � Ei

 !
uðriÞYðhi;/iÞ ¼ 0; i ¼ e;h ð2Þ

where Ei is the kinetic energy of a particle, u(ri) is the radial part of
the wave function and Y(hi, /i) is the angular part of the wave func-
tion. Vi is either Ve or Vh outside the QD (ri > R) and zero inside QD
(0 < ri � R). We treat the interaction energy V in Eq. (1) as a pertur-
bation and evaluate it to the first order [9,12].

Since the transition occurs between the lowest energy state of
electron (1Se) in the conduction band and the ground state of hole
(1Sh) in the valence band, we employ the radial wave functions for
the 1Se and 1Sh states with the spherical harmonics Y(hi, /i) = 1/4p
for orbital angular momentum l = 0. The radial wave function is
given in Eq. (3) [9].

uinðriÞ ¼ Ai
sinðairiÞ
airi

; ai ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2miEi

p
�h

for 0 < ri 6 R;

uoutðriÞ ¼ Bi
expð�biriÞ

biri
; bi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðV i � EiÞ

p
�h

for ri > R; i ¼ e;h

ð3Þ
where Ai and Bi are the normalization constants for uin(ri) and
uout(ri), respectively. uin(ri) is the spherical Bessel function of the
zeroth order and uout(ri) is the spherical Hankel function of the first
kind of order zero. Inside the potential well, the electron and hole
have the effective mass of me and mh, respectively. Outside the
potential well, both the electron and hole have the mass of electron
m. To determine ai, bi and the kinetic energy Ei, we apply the
boundary conditions (i) and (ii) [20], as given in Eq. (4).

iÞ uinðri ¼ RÞ ¼ uoutðri ¼ RÞ;

iiÞ 1
mi
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@ri

����
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¼ 1
m
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@ri

����
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; i ¼ e;h ð4Þ

The resulting Eq. (5) is numerically solved to find a set of ai and
bi that satisfies F(ai, bi) = 0 at ri = R, which results in the kinetic
energies of electron (Te) and hole (Th) [9].

Fðai;biÞ ¼
aiR

tanðaiRÞ þ
mi

m
� 1

� �
þmi

m
biR; i ¼ e;h: ð5Þ

The size-dependent dielectric constant of QD (e) and the mean
distance between electron and hole (r0) inside QD are calculated
using the Haken equation [19], as given in Eqs. (6) and (7),
respectively.

1
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¼ 1
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� 1
e0

� �
expð�r0=qeÞ þ expð�r0=qhÞ

2

� 	
;

qi ¼
�h

2mixLO

� �
; i ¼ e;h ð6Þ

r0 ¼ uinðreÞuinðrhÞkre�rhkuinðreÞuinðrhÞh i

¼
Z R

0

Z R

0

Z p

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2e þ r2h�2rerh cosh

q
juinðreÞj2juinðrhÞj2r2er2h sinhdhdrhdre

ð7Þ
where xLO is the longitudinal optical frequency and h is the angle
between re and rh.

The electron�hole interaction energy (V) includes the charge–
charge (Vcharge) [12], charge–image charge (Vimage charge) [12] and

Fig. 1. A schematic of the natural potential well model: the energy level (top) and
the dielectric constant profile (bottom). EA and IE are the electron affinity and
ionization energy of solvent, respectively. CBM and VBM are the conduction band
minimum and valence band maximum of a bulk material, respectively. Eg is the
bulk bandgap. Ve and Vh are the well depths for electron and hole, respectively. e is
the size-dependent dielectric constant of QD, es is the dielectric constant of solvent,
and e(r) is the smooth dielectric profile that varies between e and es as a function of
distance r (R � d � r � R + d). R is the radius of QD and d is the range parameter.
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