
A transfer matrix method for free vibration analysis and crack
identification of stepped beams with multiple edge cracks and
different boundary conditions

Mostafa Attar n

School of Mechanical Engineering, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Australia

a r t i c l e i n f o

Article history:

Received 31 October 2010

Received in revised form

19 September 2011

Accepted 17 January 2012
Available online 28 January 2012

Keywords:

Cracked beam

Natural frequency

Transfer matrix

Characteristic equation

Crack identification

a b s t r a c t

This paper illustrates an analytical approach to investigating natural frequencies and mode shapes of a

stepped beam with an arbitrary number of transverse cracks and general form of boundary conditions.

A new method to solve the inverse problem of determining the location and depth of multiple cracks is

also presented. Based on the Euler–Bernoulli beam theory, the stepped cracked beam is modeled as an

assembly of uniform sub-segments connected by massless rotational springs representing local

flexibility induced by the non-propagating edge cracks. A simple transfer matrix method is utilized

to obtain the general form of characteristic equation for the cracked beam, which is a function of

frequency, the locations and sizes of the cracks, boundary conditions, geometrical and physical

parameters of the beam. The proposed method is then used to form a system of 2N equations in order

to identify N cracks exploiting 2N measured natural frequencies of the damaged beam. Various

numerical examples for both direct and inverse problem are provided to validate the present approach.

The results are in good agreement with those obtained by finite element and experimental methods.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Dynamic behavior of machine components represents one of
the main problems in solid mechanics and must be controlled to
ensure the safety and reliability of structures against collapse or
to assess their residual load carrying capacity. It has a crucial
importance, especially for aerospace, mechanical, civil and ocean
engineering. Mechanical members like beams and columns,
which are widely used in high speed machinery or aircraft
structures, may contain imperfections such as cracks. The cracks
may develop from flaws due to applied cyclic loads, mechanical
vibrations, aerodynamic loads, etc. and it is obvious that they
cause a lower structural integrity and change dynamic properties
such as natural frequencies and mode shapes of the components,
so should be certainly taken into account in the vibration analysis
of the structures.

Investigating the dynamic behavior of cracked beams has
received a great deal of attention over the recent years. Dimar-
ogonas [1] and Gasch [2] presented comprehensive reviews of
various methods in tackling a cracked structural member. Dimar-
ogonas and Paipetis [3] suggested an attractive method for
modeling the open edge crack in a beam as a local flexibility

which can be derived from the stress intensity factors in the
theory of fracture mechanics. Under the most general loading, the
local flexibility can be represented by a matrix of dimension 6�6
[4]. Local flexibility coefficients depend on the size of the crack
and crack plane’s geometry. In the case of transverse vibration of
beams under pure bending, the cracked section may be replaced
by a single rotational spring representing local flexibility of the
crack [5]. Using the local flexibility for investigating free vibration
of edge-cracked beams includes two aspects; the first one is the
effects of the cracks on the structural dynamic characteristics like
natural frequencies and mode shape of damaged beams as a
‘‘direct problem’’ and the second one is how to predict the
location and size of the cracks from the measured information
of the damaged beam system as an ‘‘inverse problem’’. The direct
analysis of vibrating beams in the presence of edge cracks is
necessary to solve the inverse problem.

Euler–Bernoulli theory has been used in many previous studies
on the cracked beams with various boundary conditions [6–9].
Narkis and Elmalah [10] analyzed vibration of the simply sup-
ported cracked beam by using a massless rotational spring and
dividing the beam into two sub-beams. Zheng and Fan studied
beams with hollow rectangular and circular sections [11]. Lele
and Maiti [12] provided a new method based on the Timoshenko
theory for crack identification in beams and Loya et al. [13]
studied the effect of cracks on the natural frequencies of a simply
supported Timoshenko beam. In general, there are two main
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categories to study dynamic behavior of a cracked beam; con-
tinuous method and discrete method. In the continuous method,
a beam is divided into a number of sub-beams (sub-segments)
connected by rotational springs and differential equations are
solved for each beam individually considering boundary condi-
tions [5,14] and discrete technique involves the finite element
method [15]. In the field of inverse problems, greater attention in
recent years has been devoted to detecting, locating and quanti-
fying the extent of the crack, based on changes of fundamental
frequencies, mode shapes or dynamic flexibility [12,16–21]. Liang
and co-workers [16] utilized frequency contour plot method
exploiting the first three natural frequencies to detect a crack in
a beam. Lee [17] used a combination of the finite element method
and the Newton–Raphson procedure to identify multiple cracks.

Studies on the bending vibration of edge-cracked beams are
mostly presented for uniform beams with only one or at most two
cracks and there are a few studies on the vibration of non-uniform
beams with cracks. Jang and Bert [22] analyzed free vibration of
stepped beams with different boundary conditions and Nagules-
waran [23] studied the vibration of a stepped beam with axial
force. Nandwana and Maiti [7] presented a method for crack
detection in a stepped cantilever beam. Shifrin and Ruotolo [14]
proposed a technique which can be used to analyze the vibratory
characteristics of a beam with multiple cracks. However, only
uniform beams can be solved using their approach.

The transfer matrix method (TMM) is a prevalent and efficient
tool for free vibration analysis of beams with non-uniform
mechanical properties. This method, first introduced by Pestel
and Leckie [24], has been the subject of several research papers
[25–27]. Modified transfer matrix methods are also developed to
study the dynamic behavior of beams with various attachments
[28,29].

The objective of the present paper is to present an analytical
method to investigate free vibration of a stepped beam having an
arbitrary number of transverse open cracks with general form of
boundary conditions and provide an efficient approach to solving
the inverse problem of detecting multiple open cracks in a beam.
Both ends of the beam carry lumped masses (m1 and m2) and are
supported by linear (K1 and K2) and rotational (KR1 and KR2)
springs. Using the elastic end conditions for the beam, one may
easily model all kinds of two end supports by choosing appro-
priate values for stiffness of the springs. The present model is
based on the continuous method and the stepped cracked beam is
modeled as an assembly of uniform sub-segments connected by
massless rotational springs representing local flexibility induced
by open non-propagating edge cracks. The flexibilities of these
springs are calculated using fracture mechanics theory [11].

Based on the Euler–Bernoulli beam theory, differential equa-
tions for free vibrations are derived for each segment. Four
unknown coefficients appear in the solution of deflection function
for each sub-segment of cracked beam. To determine these
constants the transfer matrix method is employed to satisfy the
conditions at all boundary points of the sub-segments, which
leads to a general frequency equation for the damaged beam. This
equation is expressed in terms of the elements of the overall
transfer matrix. In addition, the mode shapes of the damaged
beam play a crucial role in providing the local and whole
information of the structure. In addition to natural frequencies,
equivalent mode shapes can be derived using the present TMM.

To solve the inverse problem, this study presents an effective
scheme based on the transfer matrix method and the Newton–
Raphson iteration procedure to identify N cracks exploiting 2N

measured natural frequencies of the damaged beam. In this
technique, the proposed transfer matrix method is utilized to
form a system of 2N equations, where the locations and sizes of
the cracks are unknown parameters. This system of equations

may be solved by an appropriate numerical method to yield the
crack parameters.

Various detailed numerical examples are also given to demon-
strate the effectiveness of the proposed procedure. The results are
in good agreement with those obtained by finite element and
experimental methods. The calculated frequency equation and
corresponding mode shapes can be useful to evaluate the influ-
ence of parameters like boundary conditions, crack depth, crack
location, number of cracks and structural constants, reducing
significantly computational time in comparison with a detailed
finite element analysis. Moreover, it can provide a wide range of
data sets which are essential for most of the crack detection
procedures.

2. Local flexibility due to a crack

An open crack on an elastic structure can be considered as a
source of local flexibility due to the strain energy concentration at
the surrounding area of the crack tip. The idea of replacing a crack
by a massless spring is presented to establish the relation
between the strain energy concentration and applied loads. The
flexibility coefficients are expressed in terms of stress intensity
factors, utilizing Castigliano’s theorem. Generalized loading con-
ditions for a beam element of circular or rectangular cross-section
with a transverse surface crack are shown in Fig. 1. The crack has
a tip line parallel to z-axis and the bar is loaded with axial load, P1,
shear loads, P2 and P3, bending moments, P4 and P5, and torsional
torque, P6. According to the Castigliano’s theorem, the additional
displacement caused by the crack is given as
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where U is strain energy due to the crack, Ac is crack section, ui is
the additional displacement in the direction of the loading Pi and
J is strain energy density function given by Tada et al. [30] as
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where n is Poisson’s ratio, E is Young’s modulus, E0 ¼ E for plane
stress and E0 ¼ E=ð1�n2Þ for plane strain and Kniðn¼ I,II,IIIÞ is the
crack stress intensity factor of mode n corresponding to the
generalized loading Pi. The SIF in the Eq. (2) is determined as

Kni ¼ si

ffiffiffiffiffiffi
pa
p

Fni ðn¼ I,II,IIIÞ, ði¼ 1,2,. . .,6Þ ð3Þ

In which, si is the stress at the crack cross-section due to ith
independent force, a is the crack depth and Fni denotes a geometry
dependant non-dimensional crack configuration factor. Now, the
flexibility coefficient, by definition, is

Cij ¼
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According to Eqs. (2)–(4), the elements of the local flexibility
matrix depend only on the degrees of freedom being considered
for the moments and forces applied on the crack section. The full
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Fig. 1. Beam with an open edge crack under generalized loading condition:

(a) rectangular cross-section and (b) circular cross-section.
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