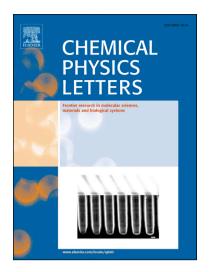
Accepted Manuscript

Research paper

Fabrication and Characterization of Electrochemically Prepared Bioanode (Polyaniline/Ferritin/Glucose Oxidase) for Biofuel Cell Application

Sufia ul Haque, Inamuddin, Abu Nasar, Abdullah Mohamed Asiri


PII: S0009-2614(17)31120-X

DOI: https://doi.org/10.1016/j.cplett.2017.12.035

Reference: CPLETT 35311

To appear in: Chemical Physics Letters

Received Date: 22 August 2017 Accepted Date: 13 December 2017

Please cite this article as: S. ul Haque, Inamuddin, A. Nasar, A. Mohamed Asiri, Fabrication and Characterization of Electrochemically Prepared Bioanode (Polyaniline/Ferritin/Glucose Oxidase) for Biofuel Cell Application, *Chemical Physics Letters* (2017), doi: https://doi.org/10.1016/j.cplett.2017.12.035

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Fabrication and Characterization of Electrochemically Prepared Bioanode (Polyaniline/Ferritin/Glucose Oxidase) for Biofuel Cell Application

Sufia ul Haque¹, Inamuddin^{2,3,*}, Abu Nasar¹, Abdullah Mohamed Asiri^{2,3}

¹, Department of Applied Chemistry, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh 202002, India

²Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia.

³Centre of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia.

ABSTRACT

Porous matrix of polyaniline (PANI) has been electrodeposited along with the entrapment of biocompatible redox mediator ferritin (Frt) and glucose oxidase (GOx) on the surface of glassy carbon (GC) electrode. The characterizations have been carried out by Fourier-transform infrared spectroscopy (FTIR), X-ray Diffraction (XRD) and Transmission electron microscopy (TEM). The enhanced electrochemical signal transfer rate from enzyme to the electrode surface was due to the intimate contact of the enzyme with the electrochemically polymerized conducting PANI matrix. The PANI/Frt/GOx modified GC bioanode was used to investigate the electrocatalytic activity as a function of the concentration of glucose in the range of 10-60 mM. It was confirmed by the electrochemical impedance spectroscopy (EIS), the thick deposition of PANI layer becomes more compact due to which the charge transfer resistance of PANI matrix becomes higher. All the electrochemical measurements of the electrode were carried out by using cyclic voltammetry (CV) and linear sweep voltammetry (LSV). CV curves were recorded at different scan rates (20-100 mV/s) at 50 mM of glucose in 0.3 M potassium ferrocyanide. A normalized saturation current density of 22.3±2 mA/cm² was observed for the oxidation of 50 mM glucose at a scan rate of 100 mV/s.

Download English Version:

https://daneshyari.com/en/article/7838565

Download Persian Version:

https://daneshyari.com/article/7838565

<u>Daneshyari.com</u>